ISOLATION AND PRIMARY IDENTIFICATION OF SHIGA TOXIN PRODUCING ESCHERICHIA COLI O157 IN DAIRY CATTLE

K. KOEV, G. ZHELEV, P. MARUTSOV, K. GOSPODINOVA & V. PETROV
Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria

Summary

During the last years, the significance of diseases associated etiologically to Shiga-toxin producing Escherichia coli (STEC) is continuously increasing at a global scale, while the O157 serotype is considered as one of the most important pathogens of animal origin. Large ruminants play a key role in the epidemiology of E. coli diseases among men. Bovine faeces are a primary source of contamination of the environment and foods with this agent. The purpose of this study was to test a specific, microbiological algorithm for primary identification of STEC isolates from bovine faeces using sorbitol McConkey agar supplemented with cefixime and tellurite. The attempts were focused not only on increasing the sensitivity and specificity of serotype identification, but also on optimisation of labour and analysis costs. From May 2013 to October 2014, a total number of 1104 faecal swab samples from calves 3 to 6 months of age were collected from 19 farms in different administrative and geographical regions of Bulgaria. Thirty six sorbitol-negative E. coli isolates (3.26%) were detected as belonging to the O157 serotype after slide agglutination test.

Key words: cattle, Escherichia coli O157, faeces, isolation

INTRODUCTION

Escherichia coli (E. coli) is an ubiquitous intestinal bacterial species in both animals and humans. Colibacteria are the predominant facultative anaerobe commensal organisms in human large intestines (Konowalchuk et al., 1977; Bell et al., 1994).

Several pathogenic biovars of E. coli are able to induce a broad spectrum of diseases in men and animals (Konowalchuk et al., 1977; Riley et al., 1983; Schmidt et al., 1995). During the last three decades, a group of E. coli with unique virulence attributes was formed, which colonises the large intestines of large ruminants without clinical expression of disease, but which causes severe illness in men manifested by haemorrhagic diarrhoea and kidney failure, also known as
Isolation and primary identification of shiga toxin producing Enterobacteriaceae O157 in dairy cattle

Haemolytic-uraemic syndrome (HUS), often with lethal outcome (Kaper et al., 2004). This group is known as shiga-toxin producing E. coli (STEC).

From a historical perspective, shiga-toxin producing E. coli (STEC) was described for the first time in Canada by the end of the 1970s by Konowalchuk et al. (1977). Various research teams have contributed to causal agent detection; O’Brien and LaVeck were the first to prove that E. coli strains could produce shiga-like toxin (O’Brien & LaVeck, 1983). The same year, an outbreak of food-borne intoxication after consumption of hamburgers was reported in the USA in patients with haemorrhagic colitis which was associated by Riley and his team with the rare serotype E. coli O157: H7 isolated from faecal samples, and later, the production of Shiga toxin (STX) was proved (Riley et al., 1983). Again in 1983, it was demonstrated that the haemolytic-uraemic syndrome (HUS) could be provoked by STEC O157:H7, as well as by other STEC serotypes (Karmali et al., 1983a; 1983b).

Shiga-toxin producing E. coli O157:H7 (STEC O157:H7) are important human pathogens capable of being transmitted via several alternative routes. The infection of men could be asymptomatic (without clinical signs) or could be accompanied by a variable clinical expression varying from mild watery diarrhoea through bloody diarrhoea, haemorrhagic colitis affecting the large intestinal mucosa (HC), to haemolytic-uraemic syndrome (HUS) and thrombocytocytic thrombocytopaenic purpura (TTP). Often, the outcome of these life-threatening states is fatal (Mead & Griffin, 1998).

The recommendation of the expert group of the European Food Safety Authority (EFSA) engaged in biohazard evaluation affirms that the monitoring of animals and foods in the EC should be initially concentrated on STEC O157:H7. It is incriminated as the serotype most commonly associated with severe human infections and HUS, but that it should be extended to other serotypes as O26, O103, O104, O91, O145 and O111, which, after O157 are identified as frequent causes of infections of people in Europe. Therefore, the significance of these serotypes should not be underestimated (Anonymous, 2007).

The purpose of this study was to test a specific, microbiological algorithm for primary identification of STEC isolates from bovine faeces using sorbitol McConkey agar supplemented with ce-fixime and tellurite.

MATERIALS AND METHODS

The study was performed in 2013–2014. It included 19 intensive cattle farms from 5 administrative regions of the country. The capacity of all farms was up to 1000 animals, including dairy cows, heifers, calves from 3 to 6 months of age, and suckling calves.

A total of 1104 anal swabs were collected. From all farms, 30–60 swabs were obtained from 3-6-month-old calves depending on the farm population size.

Bacteriological examinations

Initially, selective enrichment of rectal swabs were done in tryptic soy broth (Tryptone Soya Broth Modified, Oxoid) supplemented with novobiocin (Novobiocin Supplement, Oxoid). The aim was to increase the number of target organisms and at the same time, to inhibit the concurrent microflora (Bacteroides spp., Lactobacillus spp., Proteus spp., Enterococcus spp., Clostridium spp.). The incubation was performed in a thermostat at 37 °C for 4–6 h.
Then the cultured samples were subcultured on selective medium—Sorbitol Mac Conkey Agar (SMAC) (Oxoid), supplemented with cefixime and tellurite (Cefixime, Tellurite, Oxoid). SMAC is considered as the medium of choice for isolation. SMAC containing cefixime and potassium tellurite is the most commonly used nutrient medium for selectively enriched bovine samples with or without immunomagnetic separation (IMS). The incubation was under aerobic conditions, temperature 37 °C for 18–20 h.

After a careful inspection, 5 single, sorbitol-negative colonies were selected and cultured on Kligler’s polytrope medium (Kligler agar, Oxoid), poured in tubes standing in upright positions or on agar slants. They were incubated under aerobic conditions, 37 °C for 24 h, and the utilisation of lactose, production of gas from glucose fermentation, hydrogen sulphide production, urease activity were evaluated. The isolates identified as E. coli were cultured again on selective medium—Sorbitol Mac Conkey Agar supplemented with 4-methylumbelifery-β-D-glucuronide (MUG supplement, Liofilchem).

On the next stage of the identification protocol, MUG-negative colonies were inoculated onto ordinary agar. After 24-hour aerobic incubation at 37 °C, sorbitol non-fermenting, beta-glucuronidase negative colonies were tested in latex agglutination test (Oxoid Escherichia coli O157 Latex test) to detect if the suspected isolate belonged to the O157 serotype, i.e. if it was a potential Shiga-toxin (STX) producer.

RESULTS

From all analysed 1104 anal swabs, 36 of sorbitol-negative E. coli isolates (3.26 %), were positive in the agglutination test with E. coli O157 antiserum (Table 1).

The table shows that a large percentage of samples, more than 70%, contained sorbitol negative colonies. It should be noted that some of the samples, respectively the plate contained several sorbitol negative colonies, while others were all sorbitol negative. A similar trend in percentage (71.2%) was also observed in the next test step, namely their determination as Escherichia coli of Kligler Iron Agar (KIA) – yellow colour of the slant presence of gas and absence of hydrogen sulphide. Only 13.4 percent or 77 of the proven E. coli strains showed lack of beta glucuronidase activity from the last less than half (46.7%) belonging to O157 serogroup, through agglutination testing.

DISCUSSION

The calves from which the samples were obtained were not randomly selected but their age was compliant to multiple field studies. According to literature data, cattle from the age group within 3 and 18 months are at the highest risk for shedding STEC O 157:H7. This age range corresponded to the period of life when calves left the individual boxes and formed groups, i.e. about the 70th day of life.

The cultivation of ruminant faeces for isolation of a specific serotype is a real challenge at the background of the existing huge diversity and amount of concurrent microflora. In existing studies, various methods with excellent results are reported. The combination of several techniques and methods of cultivation increases the probability for detection of the target organisms.
Isolation and primary identification of shiga toxin producing Escherichia coli O157 in dairy cattle

The methodology of cultivation changes incessantly and the efforts are concentrated not only on enhancing the sensitivity of serotype identification, but also on reducing the labour and analysis costs.

The protocols described in the literature use different enrichment media – tryptic soy broth (TSB), modified E. coli broth (mEC) and buffered peptone water (BPW) combined with one or more inhibiting antibiotics (novobiocin, cefixime, cefsulodin, vancomycin).

Potassium tellurite is added to slow-down or stop the growth of E. coli and Aeromonas spp. and to benefit the replication of STEC O157: H7, whose average resistance to inhibitors is higher than that of the concurrent faecal microflora. Thus, the supplementation of SMAC with potassium tellurite is advised for increasing the sensitivity of E. coli O157:H7 detection via differential inhibition of non-O157 E. coli and other bacteria (Sanderson et al., 1995).

Cefixime is a third-generation cephalosporin from the aminothiazole group targeted against Proteus spp. (which are frequently sorbitol-negative) and sorbitol-fermenting microorganisms, thus reducing false positive results.

It should be however stated that sorbitol-fermenting bovine STEC O157 strains could be missed by this method, although this is exceptionally rare.

Unlike many other E. coli serotypes, E. coli O157: H7 are b-glucuronidase negative. Media containing 4-methylumbeliferyl-β-D-glucuronide (MUG) have been developed to benefit from this fea-

<table>
<thead>
<tr>
<th>Farm No</th>
<th>Number of samples</th>
<th>Sorbitol negative</th>
<th>Positive for E. coli in KIA</th>
<th>MUG positive</th>
<th>Seropositive for O157</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>45</td>
<td>38</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>38</td>
<td>26</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>25</td>
<td>18</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>36</td>
<td>24</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>42</td>
<td>32</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>39</td>
<td>28</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>34</td>
<td>21</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>29</td>
<td>15</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>64</td>
<td>56</td>
<td>38</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>48</td>
<td>40</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>60</td>
<td>45</td>
<td>36</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>19</td>
<td>12</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>60</td>
<td>38</td>
<td>26</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
<td>20</td>
<td>9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>56</td>
<td>49</td>
<td>31</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>112</td>
<td>69</td>
<td>54</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>69</td>
<td>35</td>
<td>27</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>83</td>
<td>65</td>
<td>46</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>97</td>
<td>72</td>
<td>52</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>1104</td>
<td>804</td>
<td>573</td>
<td>77</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 1. Biochemical characteristics of tested isolates
of E. coli O157 on more than 70 farms, a herd prevalence rate of 7.1% was established, whereas 10/250 faecal swabs were positive, i.e. animal prevalence was 1.8% in calved younger than 4 months of age, which is fully in compliance with our results.

CONCLUSION

Remembering that our study reflects only the situation over a short period of time and that a small part of cattle farms in North Bulgaria were surveyed, we could make only suggestions instead of relevant conclusions. Anyway, the results from the study provide a background for future more detailed investigations and analyses on this exciting subject which remains still unexplored due to the character and structure of the national dairy cattle farming. The population level monitoring would contribute for further comprehension of the role of this microorganism in the epidemiology of human diseases. Therefore, the number of samples collected from different geographical and administrative regions of the countries is deemed necessary in order to improve the representativeness and statistical relevance of reported data and consequently, to take action for verification and revision of existing molecular biological approaches for classification and identification of STEC isolates.

REFERENCES


Bell, B. P., M. Goldof, P. M. Griffin, M. A. Davis, D. C. Gordon, P. I. Tarr & R. Baron, 1994. A multistate outbreak of Es-
Isolation and primary identification of shiga toxin producing Escherichia coli O157 in dairy cattle


Paper received 27.10.2016; accepted for publication 06.02.2017

Correspondence:

Koycho Koev
Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
e-mail: kokicvet@gmail.com