EFFECTS OF AFLATOXIN B₁ ONLY OR CO-ADMINISTERED WITH MYCOTOX NG ON PERFORMANCE AND HUMORAL IMMUNITY OF TURKEY BROILERS

I. VALCHEV¹, V. MARUTSOVA¹, I. ZARKOV², A. GANCHEV³ & Y. NIKOLOV¹

¹Department of Internal Non-Infectious Diseases, ²Department of Veterinary Microbiology, Infectious and Parasitic Diseases; ³Fourth year student, Faculty of Veterinary Medicine, Stara Zagora, Bulgaria

Summary

The contamination of poultry feeds with aflatoxins is a global problem responsible for considerable losses to poultry industry. The aim of the present investigation was to evaluate the effects of aflatoxin B₁ and Mycotox NG, applied either independently or together, on performance, relative weights of visceral organs and antibody titres against Newcastle disease in turkey broilers. Experiments of 42-day duration were carried out with sixty 7-day-old female turkey broilers (meat TM strain) divided into one control and five treatment groups (n=10): Group I – control (fed standard feed according to the species and age of birds); Group II – experimental, whose feed was supplemented with 0.5 g/kg Mycotox NG, Group III – experimental, whose feed contained 0.2 mg/kg aflatoxin B₁, Group IV – experimental, whose feed contained 0.4 mg/kg aflatoxin B₁, Group V – experimental, supplemented with 0.2 mg/kg aflatoxin B₁ and 0.5 g/kg Mycotox NG and Group VI – experimental, supplemented with 0.4 mg/kg aflatoxin B₁ and 0.5 g/kg Mycotox NG. In Groups III and IV, production traits (live body weight, daily weight gain, feed intake) as well as antibody titres were reduced along with increased feed conversion and relative weights of liver, kidneys, heart, pancreas, proventriculus and gizzard. At the same time, relative weights of the spleen, thymus and bursa of Fabricius were statistically significantly lower. The supplementation of the feed of Groups V and VI with 0.5 g/kg Mycotox NG reduced and prevented some of deleterious effects of AFB₁ on production traits, antibody titres and relative weights of visceral organs.

Key words: aflatoxicosis B₁, turkey broilers, relative weights, humoral immunity, Mycotox NG

INTRODUCTION

The increased demands for poultry meat pose some risk for poultry health, some of them associated to feed quality (Rawal et al., 2010). Cereal crops which are among
Effects of aflatoxin B₁ only or co-administered with Mycotox NG on performance and humoral ...

the main components of poultry feeds could be contaminated with different moulds. Under favourable environmental conditions, some fungal strains are capable to produce specific metabolites termed mycotoxins (Pitt & Hocking, 2006). These compounds are structurally different and could cause various biological and toxicological effects (Fuchs et al., 2008).

Moulds producing aflatoxins are ubiquitous in soil and common contaminant of feeds in parts of the world with warm and humid climate (Fowler et al., 2014). Aflatoxins are a group of heterocyclic secondary toxic metabolites of fungi from the genus Aspergillus (Aspergillus flavus, Aspergillus parasiticus and Aspergillus nomius) (Shlej et al., 2015). They contaminate cereals (wheat, corn, sorghum, rice) and oil-bearing crops (sunflower, soybean, peanut and cotton flours), the most risky ingredients of compound feeds for turkey poults.

Aflatoxin B₁ is the most toxic among all other aflatoxins, and is frequently found at high concentrations in cereal crops and peanut flour (Gowda et al., 2004). High dietary aflatoxin levels provoke acute aflatoxicosis with impaired coordination, vertigo, paresis, bloody diarrhoea, visceral haemorrhages, necrosis of hepatocytes, biliary epithelium hyperplasia, subcutaneous oedema, pale icteric skin, coma and death (Resanovic et al., 2009). The consumption of feeds contaminated with low aflatoxin levels induce chronic aflatoxicosis which is usually associated to reduced productive performance and suppressed immunity. These changes are characterised with reduced weight gain, feed intake, increased feed conversion (Chibanga et al., 2014), reduced production of eggs, meat, poorer technological properties of meat (Liu et al., 2011); altered visceral organ weights (Manafi, 2012; Manafi et al., 2014; Kumar et al., 2015). Aflatoxins are potent immunosuppressors, enhancing the susceptibility of birds to many secondary infections with other pathogens – fungi, bacteria, viruses, protozoa (Lawal & Bolu, 2014). The changes in haematological and blood biochemical parameters (Al-Daraji, 2012; Kana et al., 2014); liver, heart and brain morphology (Ramdas et al., 2013); immunocompetent organs (thymus, bursa of Fabricius, spleen) (Sakhare et al., 2007; Ramdas et al., 2013) and intestines (Aboutalebi, 2013) were studied. Among domestic fowl, most sensitive are growing ducklings, goslings, pheasants and broiler chickens (Leeson et al., 1995).

The prevention, detoxication and decontamination of feed ingredients contaminated with aflatoxins are of particular significance. The effects of various inert mycosorbents – hydrated calcium sodium (HSCAS) (Jindal et al., 1993), zeolites (Miazzo et al., 2000), bentonites (Santurio et al., 1999), activated charcoal (Edrington et al., 1997) and live yeasts cultures (Saccharomyces cerevisiae) (Aravind et al., 2003) were investigated but the results were not promising. Toxin binders are capable to bind aflatoxins reducing their absorption by the gastrointestinal tract and their bioavailability in blood. Nevertheless, some of them also reduce the bioavailability of amino acids and/or minerals (Dawson, 1999).

The aim of the present investigation was to evaluate the effects of aflatoxin B₁ and Mycotox NG, applied either independently or together, on performance (live body weight, weight gain, feed intake, feed conversion), relative weights of visceral organs (liver, kidneys, heart, bursa of Fabricius, spleen, thymus, pancreas, gizzard and proventriculus) and
antibody titres against Newcastle disease in turkey broilers.

MATERIALS AND METHODS

Toxin and adsorbent

Aflatoxin B_1 used in this experiment (produced by *Aspergillus flavus*, 99% purity) was obtained from Sigma-Aldrich (Germany). Mycotox NG (Ceva Santé Animale, France) contained micronised yeasts, montmorillonite, thymol.

Experimental design

The experiment was approved by the Bulgarian Food Safety Agency – permit No 19218/06.11.2014. It was performed with 60 7-day-old female turkey broilers (from the meat TM strain) randomly divided into six groups ($n=10$). All birds were fed standard feed according to the species and age, produced by a feed factory. The experimental design comprised: Group I – control; Group II – experimental, whose feed was supplemented with 0.5 g/kg Mycotox NG; Group III – experimental, whose feed contained 0.2 mg/kg aflatoxin B_1; Group IV – experimental, whose feed contained 0.4 mg/kg aflatoxin B_1; Group V – experimental, supplemented with 0.2 mg/kg aflatoxin B_1 and 0.5 g/kg Mycotox NG; Group VI – experimental, supplemented with 0.4 mg/kg aflatoxin B_1 and 0.5 g/kg Mycotox NG.

All turkey poults were kept under optimum microclimatic parameters according to Ordinance 44/2006.

Live body weight, daily feed intake, daily weight gain and feed conversion ratio were determined on 14th, 28th and 42nd experimental days by weighing. Feed conversion was evaluated as ratio of feed intake and average daily gain. Relative weights of visceral organs (liver, kidneys, heart, bursa of Fabricius, spleen, thymus, pancreas, gizzard and proventriculus) were determined after euthanasia of birds by cervical dislocation as per Ordinance 20 on the minimum requirements for the protection and welfare of experimental animals and requirements to objects for use, cultivation and/or supply (State Gazette 87/9/11/2012) as percentages of respective organ weight to body weight.

At day-old, turkeys have been vaccinated with live lyophilised vaccine Nobilis® ND C2 against Newcastle disease (ND) applied via aerosol route. At 14 days of age, immunity boost was done through revaccination with lentogenic NDV vaccine (Nobilis ND Clone 30, Intervet) applied via eye drop.

Blood samples for antibody titre determination were collected from *v. metatarsalis medialis* on post treatment days 21 and 42 in sterile plain containers (FL medital, Italy). Sera were harvested and stored at -20°C until analysis. Antibody titres were assayed by haemagglutination inhibition (HI) test (Anonymous, 2012).

Statistical analysis

Results were statistically processed by one-way analysis of variance and the Tukey-Kramer post hoc test (level of significance $P<0.05$).

RESULTS

Growth performance

The live weight of birds from Groups III and IV (Table 1) was statistically significantly lower ($P<0.001$) at the three studied time intervals (14, 28 and 42 days of age) by 22.35% and 27.66%, 20.13% and 27.61%, 18.84% and 24.65% respectively compared to control group ($P<0.001$). The addition of toxin binder to the feed of
Effects of aflatoxin B₁ only or co-administered with Mycotox NG on performance and humoral ...
Groups V and VI, respectively on the 42nd day.

Daily feed intake (Table 3) declined substantially in Groups III and IV (by 12.79% and 15.55%, \(P<0.001 \)) at day 14. During the second examination the reduction was by 5.4% and 7.86% (\(P<0.001 \)), while during the third – by 3.63% and 5.47% respectively (\(P<0.01 \) – \(P<0.001 \)). There were no significant changes in daily feed intake in Groups V and VI.

Feed conversion ratio in Groups III and IV increased significantly during the three studied time intervals (days 14, 28 and 42). In Group V, it was increased only by 10.17% by the 14th day of age. At the 28th day, feed conversion in Groups V and VI was by 12.30% and 15.38% respectively higher than that of controls (\(P<0.05 \) – \(P<0.01 \)). By the 42nd day, the noted increase in these groups was respectively by 12.38% and 14.15% (\(P<0.05 \)).

Table 3. Effect of aflatoxin \(\text{B}_1 \) (\(\text{AFB}_1 \)) only or co-administered with Mycotox NG daily feed intake of turkey broilers. Group I – control; group II – 0.5 g/kg Mycotox NG; group III – 0.2 mg/kg \(\text{AFB}_1 \); group IV – 0.4 mg/kg \(\text{AFB}_1 \); group V – 0.2 mg/kg \(\text{AFB}_1 \) + Mycotox NG; group VI – 0.4 mg/kg \(\text{AFB}_1 \) + Mycotox NG. Data are presented as mean ± SEM; \(n=10 \)

<table>
<thead>
<tr>
<th>Groups</th>
<th>14 days of age</th>
<th>28 days of age</th>
<th>42 days of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>44.97±0.048</td>
<td>143.33±0.077</td>
<td>196.28±0.088</td>
</tr>
<tr>
<td>II</td>
<td>44.77±0.13</td>
<td>143.31±0.095</td>
<td>198.42±0.12</td>
</tr>
<tr>
<td>III</td>
<td>39.22±0.016</td>
<td>135.60±0.067</td>
<td>189.16±0.054</td>
</tr>
<tr>
<td>IV</td>
<td>37.98±0.14</td>
<td>132.07±0.051</td>
<td>185.56±0.076</td>
</tr>
<tr>
<td>V</td>
<td>42.18±0.28b</td>
<td>139.15±0.077b</td>
<td>192.72±0.070b</td>
</tr>
<tr>
<td>VI</td>
<td>42.77±0.024d</td>
<td>139.26±0.048d</td>
<td>193.00±0.184a</td>
</tr>
</tbody>
</table>

*Difference from control group I; \(aP<0.05 \); \(bP<0.01 \); \(cP<0.001 \); 1 – vs control group; 2 – vs group I; 3 – vs group II; 4 – vs group III; 5 – vs group IV.

Table 4. Effect of aflatoxin \(\text{B}_1 \) (\(\text{AFB}_1 \)) only or co-administered with Mycotox NG on daily feed intake of turkey broilers. Group I – control; group II – 0.5 g/kg Mycotox NG; group III – 0.2 mg/kg \(\text{AFB}_1 \); group IV – 0.4 mg/kg \(\text{AFB}_1 \); group V – 0.2 mg/kg \(\text{AFB}_1 \) + Mycotox NG; group VI – 0.4 mg/kg \(\text{AFB}_1 \) + Mycotox NG. Data are presented as mean ± SEM; \(n=10 \)

<table>
<thead>
<tr>
<th>Groups</th>
<th>14 days of age</th>
<th>28 days of age</th>
<th>42 days of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.67±0.049</td>
<td>1.95±0.04+</td>
<td>2.26±0.069</td>
</tr>
<tr>
<td>II</td>
<td>1.67±0.046</td>
<td>1.96±0.045</td>
<td>2.27±0.056</td>
</tr>
<tr>
<td>III</td>
<td>2.14±0.046c</td>
<td>2.27±0.040b</td>
<td>2.63±0.074b</td>
</tr>
<tr>
<td>IV</td>
<td>2.33±0.073c</td>
<td>2.48±0.069c</td>
<td>2.69±0.066c</td>
</tr>
<tr>
<td>V</td>
<td>1.84±0.067bc</td>
<td>2.19±0.062b</td>
<td>2.54±0.057a</td>
</tr>
<tr>
<td>VI</td>
<td>1.92±0.054a</td>
<td>2.25±0.060b</td>
<td>2.58±0.060a</td>
</tr>
</tbody>
</table>

*Difference from control group I; \(aP<0.05 \); \(bP<0.01 \); \(cP<0.001 \); 1 – vs control group; 2 – vs group I; 3 – vs group II; 4 – vs group III; 5 – vs group IV.
Effects of aflatoxin B₁ only or co-administered with Mycotox NG on performance and humoral ...

Throughout the experiments, body weight, daily weight gain, daily feed intake and feed conversion ratios were similar in control group and Group II (receiving only 0.5 g/kg Mycotox NG).

The relative weights of visceral organs (g/100 g body weight) are presented in Table 5. Groups III and IV demonstrated increased relative weights of the liver by 26.76% and 36.86%; kidneys: by 31.91% and 44.68%; the heart: by 26.08% and 34.78%; the pancreas: by 30.76% and 46.15%; the proventriculus: by 47.05% and 55.88% and the gizzard: by 16.12 and 21.50% as compared to control group (P<0.001). Lower relative weights were established for the bursa of Fabricius (by 23.53% and 29.42%); the thymus (by 32% and 40%) and the spleen (by 28.79% and 31.82%) than in controls (P<0.001). The
addition of mycosorbent to the feed of Groups V and VI compensated to some extent (P<0.05 – P<0.001) increased relative weights of the liver (by 16.16% and 22.72%); kidneys (by 10.63% and 25.53%); the heart (by 10.86% and 15.21%); the pancreas (by 15.38% and 23.07%); the proventriculus (by 35.29% and 41.17%) and the gizzard (by 8.6% and 12.36%). Furthermore, the reduction in the bursa of Fabricius and the thymus was less expressed (P<0.01 – P<0.001). There was no statistically significant difference in the relative spleen weight of Groups V and VI vs controls. The addition of 0.5 g/kg Mycotox NG to compound feed of turkey broilers (Group II) did not have any adverse effect on the weights of studied organs (P>0.05).

Immunological studies

In aflatoxin-treated groups (Table 6) antibody titres after vaccination against Newcastle disease were statistically significantly lower by the 21st and 42nd day of age as compared to unchallenged group I (P<0.001). Feed supplementation with 0.5 g/kg Mycotox NG (Group V) had a positive effect on antibody production at both intervals (P>0.05 vs controls). In Group VI, the addition of Mycotox NG reduced the immunosuppressive effect of AFB1 only partly (P<0.05 – P<0.01).

DISCUSSION

Aflatoxin B1 is the prevailing fungal metabolite detected in animal feeds (Nilipour et al., 2002). This toxin raises a serious concern in poultry industry due to its high toxicity and common occurrence in poultry feeds (Tessari et al., 2006). Broilers are fed diets made from various ingredients produced under different agrometeorological conditions. Many compound feeds include corn and soybean flour, which in most instances are imported; so the contamination of these ingredients with aflatoxins occurs during transportation and storage. The content of aflatoxins in poultry feeds often exceeds the maximum allowances of 20 μg.kg⁻¹ (Aravind et al., 2003). Birds and fish are highly susceptible to the toxic effects of AFB1, even at low doses within the range 15–30 ppb (Rawal et al., 2010). The bioactivation of aflatoxins to reactive aflatoxin-8,9-epoxide

Table 6. Effect of aflatoxin B1 (AFB1) only or co-administered with Mycotox NG on haemagglutination titres against Newcastle disease in turkey broilers. Group I – control; group II – 0.5 g/kg Mycotox NG; group III – 0.2 mg/kg AFB1; group IV – 0.4 mg/kg AFB1; group V – 0.2 mg/kg AFB1 + Mycotox NG; group VI – 0.4 mg/kg AFB1 + Mycotox NG. Data are presented as mean ± SEM; n=10

<table>
<thead>
<tr>
<th>Groups</th>
<th>21 days of age</th>
<th>42 days of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7.10±0.031</td>
<td>8.1±0.23</td>
</tr>
<tr>
<td>II</td>
<td>7.28±0.038</td>
<td>8.0±0.39</td>
</tr>
<tr>
<td>III</td>
<td>4.30±0.44c2c</td>
<td>5.9±0.34b2c</td>
</tr>
<tr>
<td>IV</td>
<td>4.10±0.34b2c</td>
<td>5.0±0.36b2b</td>
</tr>
<tr>
<td>V</td>
<td>6.00±0.512a4a</td>
<td>6.6±0.343b4a</td>
</tr>
<tr>
<td>VI</td>
<td>5.10±0.601a2b3a</td>
<td>6.0±0.44b2b4a</td>
</tr>
</tbody>
</table>

*Difference from control group I; *P<0.05; **P<0.01; ***P<0.001; 1 – vs control group; 2 – vs group I; 3 – vs group II; 4 – vs group III; 5 – vs group IV.*
Effects of aflatoxin B\textsubscript{1} only or co-administered with Mycotox NG on performance and humoral ...
liver is mainly mediated by inhibited synthesis of phospholipids and cholesterol, hence the fat transportation through the liver (Manegar et al., 2010). Higher relative weights of the gizzard and proventriculus are attributed to the direct cytotoxic effect of aflatoxins on digestive organs (Abousadi et al., 2007), as well as to the irritation of gastrointestinal mucosa by aflatoxins, provoking inflammation and thickening (El-Ghany et al. 2013). Increased relative weight of kidneys was probably due to lipaemia (increased fat deposition) (Sharghi & Manafi, 2011); hypertrophy of proximal renal tubules with infiltration of lymphoid cells (Nataraj et al., 2004) or increased blood uric acid concentration leading to its deposition in renal tubules (Pandey & Chauhan, 2007). The relative weight of the pancreas increased subsequently to thickening of interlobular septa among acinar cells, cell proliferation and congestive events (Jakhar & Sadana, 2004; Abd El-Haleem et al., 2011). The established higher relative weight of the heart in the present study was most probably a result of myocardial congestive events (Jakhar & Sadana, 2004).

Lower relative weights of the thymus, spleen and bursa of Fabricius in turkeys challenged with aflatoxin only compared to untreated control birds could be due to necrosis and reduced density of lymphoid cells (Perozo & Rivera, 2003). The sensitivity of immune system to mycotoxin-induced immunosuppression is a reflexion of the sensitivity of continuously proliferating and differentiating immune cells involved in immune response and regulating the complex communication among the components of cellular and humoral immunity (Pestka & Bondy, 1994). Immunosuppressive effects of aflatoxins are associated to protein synthesis inhibition, including specific proteins as immunoglobulins IgG and IgA, inhibited migration of macrophages, and impaired haemolytic activity of the complement, lower lymphocyte counts in bursa of Fabricius and the thymus and lower rate of cytokine synthesis by lymphocytes (Ibrahim et al., 2000). Lower antibody titres are due to protein and DNA synthesis inhibition. In vitro, aflatoxin B1 inhibits RNA polymerase and the synthesis of albumin, globulins and immunoglobulins is disturbed (Makinia, 2014). As aflatoxins reduce the density of lymphoid follicles in immunocompetent organs, antibody titres against Newcastle disease and infectious bursitis decreases (Ali, 2004). Similar results were demonstrated in this study with turkeys vaccinated against ND as well.

The addition of toxin binders to poultry feeds was aimed at prevention or reduction to a minimum of free mycotoxins content. The proper storage of feed ingredients and feeds are factors essential for minimisation of mycotoxin production (Saif et al., 2003). The inclusion of Mycotox NG to the ration of birds from Groups V and VI reduced the deleterious effects of AFB1 on production traits, relative weights of the visceral organs and humoral immunity. Mycosorbents are able to bind aflatoxin molecules in the gastrointestinal tract and thus, to reduce their absorption by domestic fowl. The results agree with data from other studies with mycosorbents as clinoptilolite (Oguz et al., 2003), hydrated calcium aluminosilicate (HSCAS), sodium bentonite, montmorillonite (Ologhobo et al., 2015), essential oils (Saei et al., 2013), antioxidants (resveratrol) (Sridhar et al., 2015) and probiotics (Zuo et al., 2013).

In conclusion, the addition of increased doses of AFB1 (0.2 mg/kg or 0.4 mg/kg) to the compound feed of turkey
broilers decreased growth performance (live body weight, weight gain, feed intake, feed conversion), relative weights of visceral organs and antibody titres against Newcastle disease. The supplementation of AFB$_1$-contaminated rations with Mycotox NG reduced or prevented the toxic effects on production traits relative weights of visceral organs and altered humoral immunity. According to our results, the utilisation of toxin binders containing essential oils could reduce the toxic effects of aflatoxins in poultry. The results could serve as a background for further studies on protective influence of essential oils on poultry health, the safety and quality of poultry products.

REFERENCES

Sakhare, P. S., S. D. Harne, D. R. Kalorey, S. R. Warke, A. G. Bhandarkar & N. V. Kurkure, 2007. Effect of Toxiroak® polyherbal feed supplement during induced aflatoxicosis, ochratoxicosis and combined...

Paper received 14.03.2016; accepted for publication 08.04.2016

Correspondence:

Assist. Prof. Ivan Valchev
Department of Internal
Non-Infectious Diseases,
Faculty of Veterinary Medicine,
6000 Stara Zagora, Bulgaria,
e-mail: valtchev@abv.bg