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ABSTRACT

The paper considers the task known as “location” problem. Location problems seek the best locations for service facilities such as fire stations, military installations, airports, or warehouses. The mathematical structure of a location problem depends on the region available for the location and on the quality criteria of a location. There are many different kinds of location problems and a variety of solution techniques. 

The goal in location problems is to locate service facilities to minimize some cost function or to maximize the amount of demand for service that can be satisfied. While specific point-to-point distances are often used, the concept of coverage is an alternative. Location models fit into two categories based on whether coverage is required or optimized. 

Optimization techniques include mixed integer programming, which is the most straightforward of the methods for optimizing location problems. The objective here is to optimize a linear cost function subject to constraints describing available service. 

The primary algorithm used today to solve integer programs is the simplex algorithm with branch-and-bound applied to the relaxed integer program. There are commercial linear solvers, such as LINGO® of LINDO Systems Inc. 

The paper proposes an approach to find out a location problem solution based on the model formulation as an integer task and solved using LINGO7-language program. The mathematical model is described as an “maximal covering” location problem with additional constraints. LINGO7 is used to present the model and to report the solution. The software technique allows to modify present constraints or to add some new one for different type of scenario. It is possible to include in research the issues as construction and cost constraints, personnel training, utilities, and other issues that are considered for different operations.
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INTRODUCTION
The necessity of location decision-making has led to the development of the location analysis and modeling as part of the operations research. Location-allocation problem corresponds to the solutions of finding the best (or optimal) configuration to install one or more facilities in order to attend the largest subset of users within a service distance. The term “facility” is identified with the bases, units, equipment, weapon systems, logistics, civil objects, etc.. 

Despite of the possible different nature of the applications, location-allocation models present similar basic structure. The mathematical structure of a location problem depends on the region available for the location and how we assess the quality of the decision. There are many different kinds of location problems, and the literature offers a variety of solution techniques (Figure 1).

The goal in all cases is to locate service facilities to minimize some cost function or to maximize the amount of demand for service that can be satisfied. In addition, fundamental to modeling of location decisions is some measure of proximity. While specific point-to-point distances are often used, the concept of coverage is an alternative. Location models fit into two broad categories based on whether coverage is required or optimized (1, 2, 3, 7). 

According to one general definition, a location problem is a spatial resource allocation problem. In the general location paradigm, one or more service facilities (servers) serve a spatially distributed set of demands (customers)(4). When we look at the solution procedures, we see both optimization and heuristic techniques. Optimization techniques include mixed integer programming, which is the most straightforward of the methods for optimizing location problems. The objective here is to optimize a linear cost function subject to constraints describing available service. The primary algorithm used to solve integer programs is the simplex algorithm with branch-and-bound applied to the relaxed integer program. Another optimization technique is the Lagrangean optimization. This method leads to smaller mathematical formulation than integer programming, but it may become more difficult to solve. Heuristic techniques are used when exact methods for finding optimum solutions to location problems become too time consuming. Figure 1 shows solution and evaluation techniques for location models.
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Fugure 1.
Location models are often difficult to solve, especially for large problem instances. There are many commercially available linear solvers, such as LINGO® that overcome the computational complexity of a location models. Besides location models are application dependent. Their structural form (the objectives, constraints and variables) is determined by particular problem under study. Therefore, there does not exist an all-purpose location model that is appropriate for all potential or existing applications. 

Location Problem Types

There are two versions of the location-covering problem - the set covering location problem (SCLP) and the maximal covering location problem (MCLP). The SCLP objective is to locate the minimum number of facilities required to “cover” a given set of demand points. The covering constraints are usually based on some easily determined metric such as distance or time-of-travel. 

A main assumption of the set-covering problem is that all of the demand nodes must be covered. The MCLP corresponds to the location of facilities in order to find the largest subset of users. The objective of the MCLP is to locate a predetermined number of facilities in such a way as to maximize the demand that is covered. 

The SCLP and the MCLP are extremely powerful tools in location analysis. Applications of these covering models include the location of fire stations, bus stops, emergency services, computer service centers, airports, and military bases. Extensions to the original models may include multi-objective formulations, hierarchical location schemes, and multiple or backup coverage, and facility capacity. Another version of location covering problems is the maximal expected covering location problem (MECLP). The MECLP has been used extensively in analyzing locations for public service facilities. The MECLP presents the possibility a covered demand point is not serviced since all facilities capable of covering the demand are engaged serving other demands. The formulation is an integer program. In industrial contexts, facilities may be unable to respond to demands due to the weather, labour conditions or facility maintenance needs. To preclude this situation, we would therefore like to have more than one facility capable of covering each demand point or node, particularly those nodes that generate large numbers of demands. This idea is also applicable to the location of different military stations. Here, the primary objective is to cover all the demands with the minimum number of facilities. 

MATERIALS AND METHODS
Usually a preliminary scenario describes the problem. For example, the current capability is not adequate to meet some military demands. The major questions are connected with the number of stations (in general) and the coverage area of these stations. The task is to obtain maximum coverage with a limited number of stations in given region. 


There are some possible candidate-points (CP) where the stations can be located and certain demand points (DP) that must be served. Every CP has meteorological and geographical and logistics values. Resources limit the number of additional stations. Each candidate point’s coverage area is known. Every DP has an importance value. Each demand point’s importance value, known as the bonus value is based on the frequency of missions flown around that point. 

With a view to the scenario, the task is to locate a limited number of stations to obtain maximum coverage. The tasks in this study are the following: to represent the objective function and to formulate the set of constraints. The chosen technique to solve the location problem is the integer-programming model. 

Figure 2.

RESULTS AND DISCUSSION
Modeling Approach 

The optimum location of stations in the given region can be modeled as an MCLP with a number of additional constraints. There are candidate points that model the location of stations. The solution shows the number of demand points that can be covered and which candidate points should be selected. Each candidate point has a coverage area and each demand point has a priority (bonus) value. These bonus values show the importance of the demand points. Therefore, for each demand point is given a value depending on its strategic and operational importance. 

Demand coverage is handled in following way (5). Demand points are covered once, and then, with a minor modification, the coverage is increased to more than one. Bonus values are used to put in order the demand points. Different demand points have different bonus values based on their operational features. Each demand point does not have to be covered; however, any uncovered demand point does not contribute to the value of the objective function. Furthermore, there are constraints on the maximum number of station locations, weather, geography and logistics. 


There are two types of decision variables; one for demand points and one for candidate points. First, both types are introduced as binary integer variables. This covers the demand points only once. Then the variables for the demand points are treated as general integer variables while the decision variables for the candidate points remain binary. This approach allows us to vary the constraint parameters and analyze results regarding these variations. In order to form some regional constraints, each candidate point is given a logistics, weather and geography value. These values are based on the candidate point’s conditions with respect to these areas. For the solution, selected candidate points values have to be greater than average value for these areas. In other words, the sum of candidate point values for each additional constraint has to be greater than some level for the candidate point to be feasible. This level is a reasonable numerical value based on the conditions of the area. This location problem is formulated as an integer program and solved using LINGO7. The presumption is that candidate point selection strategy is based on current military facilities and potential sites and demand point selection depends on the areas of operation. 


Mathematical model 

The mathematical model can be described as an MCLP with additional constraints and variables [3]. A typical MCLP is formulated mathematically as the following objective function:
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where I = set of demand points, J = set of candidate facility location sites;

xj [candidate points] = 1 if site at location j is occupied, 0 otherwise;

yi [demand points] = 1 If demand point at i is covered, 0 otherwise;

ai = the value of covering demand point i, i = 1,…m;

P = the number of facility sites to locate.

The formulation of the station location problem in this study is:
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Where :

I = set of demand points;

J = set of candidate location sites;

xj = 1, if site at location j is occupied, 0 otherwise; 

yi = 1, if demand point i is covered, 0 otherwise;

ai = the value of covering demand point i , i = 1,…m;

P = the number of sites to locate; 

S = distance coverage;

dij = distance from each demand point i to each candidate site j;

Ni = { j J dij S }, the set of all candidate locations that can cover DP i, ( iI;

NL = the minimum value that has to be met by limiting constraint [4], to set the standard for logistics;

NG = the minimum value that has to be met by limiting constraint [5], to set the standard for geography;

NW = the minimum value that has to be met by limiting constraint [6], to set the standard for weather;

Lj = the individual logistics value for site j;

Gj = the individual geography value for site j;

Wj = the individual weather value for site j.

Decision variable demand points [yi] can be changed to general integer to allow multiple coverage of the demand. This increases the objective function value and effectiveness of the stations. 

Constraint [2] is the coverage constraint. The candidate station location sites cover the fixed demand points. Each candidate point has a certain number of demand points it can cover; likewise, each demand point has a set of candidate points, which cover it. 

Constraint [3] shows the limit on the number of station sites. In other words, it indicates how many points may be assigned as station sites.

Constraint [4], [5], and [6] are the limiting constraints for logistics, geography and weather. As we have mentioned before, each candidate point has its own characteristics for these issues. Therefore, last three constraints set a standard on each one of these characteristics. 

The LINGO formulation of this model is in the Appendix.
CONCLUSIONS

There are some restrictions in the model that we need to explain. These restrictions affect the model and its solution. The restrictions are on the number of stations, coverage, and regional considerations. The main emphasis should be given to the coverage restriction because it may change the optimal solution. Demand point coverage is not fixed. It may change due to operational conditions. By changing parameter values we can investigate the different cases.

This approach starts with variables and then expands to the constraints. At first, we have the solution without bonus values. We solve the model after relaxing the binary restriction on the demand points and allow them to be general integer. Then we may include bonus values in the objective function and solve the model again. Thus, we examine the impact of having bonus values and analyze the resulting differences. Figure 3 shows a model of the experiment. 


Figure 3.

The constraints also change with the coverage distances. We can examine the problem in three stages. First, we can solve the problem with the normal coverage distance, then we can reduce the coverage distance to abnormal one, and finally we apply the worst-case scenario. Since the coverage of demand points changes in each case, coverage rates differ, and we may analyze the differences. 

LINGO7 is used to represent the model and to report the solution. This software can handle about 800 integer variables and about 4000 constraints (6). For problems that contain similar sets of constraints; the user needs to code the mathematical formulation to take advantage of software’s capabilities. LINGO gives a separate report output that shows all the details and also has functions to generate different formats of the formulation (i.e., algebraic, MPS, LINDO, spreadsheet formats). In our problem, a code is devised to make the optimizer engine create the formulation’s constraints and variables. 

As we have mentioned, we may create different scenarios. Since there are several parameters involved with the problem, changing these parameters yields new formulations. A scenario is solved for location of the station sites. In this scenario, coverage is the major concern. The main scenario produces particular solutions, which are related to the coverage range of station sites. 

Preliminary results are encouraging and the experience based on the large input data and different conditions will demonstrate the effectiveness of the model. The research is still a work-in-progress.

Appendix 

MODEL:
SETS:
CANDIDATE / 1..15 / : X,GEO,LOG,W;
DEMAND / 1..10 / : Y;

MATRIX [DEMAND,CANDIDATE]:COEF;

ENDSETS
MAX = @SUM [DEMAND[I]:Y[I]]; !Y[I]*BONUS[I];

A=@SUM [CANDIDATE[K]:X[K]] ; A<5;

@FOR[DEMAND[J]:
@SUM[CANDIDATE[P]:COEF[J,P]*X[P]]>=Y[J]];

G=@SUM [CANDIDATE[E]:X[E]*GEO[E]];
G>35;
L=@SUM [CANDIDATE[S]:X[S]*LOG[S]];
L>35;

W=@SUM [CANDIDATE[D]:X[D]*W[D]];
W>35;
@FOR[ CANDIDATE[ I]: @BIN[ X]];
@FOR[ DEMAND[ J]: @BIN[ Y]]; 

END
MAX     Y[ 1] + Y[ 2] + Y[ 3] + Y[ 4] + Y[ 5] + Y[ 6] + Y[ 7] + Y[ 8]
      + Y[ 9] + Y[ 10] + Y[ 11] + Y[ 12] + Y[ 13] + Y[ 14] + Y[ 15]
      + Y[ 16] + Y[ 17] + Y[ 18] + Y[ 19] + Y[ 20]
 SUBJECT TO

 2]- X[ 1] - X[ 2] - X[ 3] - X[ 4] - X[ 5] - X[ 6] - X[ 7] - X[ 8]
      - X[ 9] - X[ 10] - X[ 11] - X[ 12] - X[ 13] - X[ 14] - X[ 15]
      - X[ 16] - X[ 17] - X[ 18] - X[ 19] - X[ 20] - X[ 21] - X[ 22]
      - X[ 23] - X[ 24] - X[ 25] - X[ 26] - X[ 27] - X[ 28] - X[ 29]
      - X[ 30] + A =    0

 3]  A <=   5

 4]- Y[ 1] + X[ 1] + X[ 2] + X[ 3] + X[ 8] + X[ 16] + X[ 17] + X[ 23]
      + X[ 24] + X[ 26] + X[ 27] + X[ 28] + X[ 29] >=   0

 5]- Y[ 2] + X[ 1] + X[ 2] + X[ 8] + X[ 9] + X[ 14] + X[ 16] + X[ 17]
      + X[ 18] + X[ 23] + X[ 24] + X[ 25] + X[ 29] + X[ 30] >=   0

 6]- Y[ 3] + X[ 1] + X[ 2] + X[ 3] + X[ 8] + X[ 9] + X[ 10] + X[ 14]
      + X[ 20] + X[ 24] + X[ 25] + X[ 26] + X[ 30] >=   0

 7]- Y[ 4] + X[ 5] + X[ 9] + X[ 10] + X[ 11] + X[ 15] + X[ 16] + X[ 18]
      + X[ 24] + X[ 25] + X[ 27] + X[ 30] >=   0

 8]- Y[ 5] + X[ 1] + X[ 3] + X[ 9] + X[ 10] + X[ 12] + X[ 15] + X[ 24]
      + X[ 25] + X[ 26] + X[ 27] + X[ 28] >=   0

 9]- Y[ 6] + X[ 13] + X[ 16] + X[ 20] + X[ 23] + X[ 24] + X[ 26]
      + X[ 30] >=   0

 10]- Y[ 7] + X[ 1] + X[ 5] + X[ 8] + X[ 9] + X[ 11] + X[ 15] + X[ 16]
      + X[ 17] + X[ 18] + X[ 20] + X[ 23] + X[ 24] + X[ 27] + X[ 28]
      + X[ 29] + X[ 30] >=   0

 11]- Y[ 8] + X[ 1] + X[ 2] + X[ 3] + X[ 5] + X[ 8] + X[ 9] + X[ 12]
      + X[ 20] + X[ 23] + X[ 24] + X[ 30] >=   0

 12]- Y[ 9] + X[ 2] + X[ 3] + X[ 4] + X[ 5] + X[ 8] + X[ 9] + X[ 15]
      + X[ 16] + X[ 17] + X[ 18] + X[ 19] + X[ 25] + X[ 26] + X[ 27]
      + X[ 28] + X[ 29] >=   0

 13]- Y[ 10] + X[ 1] + X[ 2] + X[ 3] + X[ 4] + X[ 10] + X[ 11] + X[ 12]
      + X[ 13] + X[ 14] >=   0

 14]- Y[ 11] + X[ 1] + X[ 3] + X[ 9] + X[ 10] + X[ 12] + X[ 15]
      + X[ 18] + X[ 19] + X[ 20] >=   0

 15]- Y[ 12] + X[ 1] + X[ 3] + X[ 9] + X[ 10] + X[ 12] + X[ 15]
      + X[ 24] >=   0

 16]- Y[ 13] + X[ 1] + X[ 3] + X[ 9] + X[ 10] + X[ 12] + X[ 15]
      + X[ 20] + X[ 21] + X[ 22] >=   0

 17]- Y[ 14] + X[ 3] + X[ 9] + X[ 10] + X[ 12] + X[ 15] + X[ 24]
      + X[ 25] + X[ 26] + X[ 27] + X[ 28] >=   0

 18]- Y[ 15] + X[ 1] + X[ 3] + X[ 9] + X[ 10] + X[ 12] + X[ 15]
      + X[ 16] + X[ 18] + X[ 19] + X[ 24] + X[ 25] + X[ 28] >=   0

 19]- Y[ 16] + X[ 3] + X[ 6] + X[ 7] + X[ 9] + X[ 10] + X[ 12] + X[ 15]
      + X[ 19] >=   0

 20]- Y[ 17] + X[ 2] + X[ 3] + X[ 9] + X[ 10] + X[ 12] + X[ 20]
      + X[ 21] + X[ 24] + X[ 28] >=   0

 21]- Y[ 18] + X[ 1] + X[ 9] + X[ 10] + X[ 12] + X[ 15] + X[ 18]
      + X[ 19] + X[ 28] >=   0

 22]- Y[ 19] + X[ 5] + X[ 6] + X[ 9] + X[ 10] + X[ 12] + X[ 19]
      + X[ 24] + X[ 27] + X[ 28] >=   0

 23]- Y[ 20] + X[ 1] + X[ 3] + X[ 12] + X[ 14] + X[ 15] + X[ 16]
      + X[ 17] + X[ 18] + X[ 24] + X[ 25] + X[ 26] + X[ 27] + X[ 28]
      >=   0

 24]- 10 X[ 1] - 8 X[ 2] - 9 X[ 3] - 9 X[ 4] - 8 X[ 5] - 8 X[ 6]
      - 8 X[ 7] - 9 X[ 8] - 8 X[ 9] - 9 X[ 10] - 8 X[ 11] - 7 X[ 12]
      - 9 X[ 13] - 10 X[ 14] - 6 X[ 15] - 6 X[ 16] - 6 X[ 17]
      - 6 X[ 18] - 6 X[ 19] - 6 X[ 20] - 7 X[ 21] - 7 X[ 22] - 7 X[ 23]
      - 7 X[ 24] - 7 X[ 25] - 8 X[ 26] - 8 X[ 27] - 8 X[ 28] - 8 X[ 29]
      - 8 X[ 30] + G =    0

 25]  G >=   40

 26]- 7 X[ 1] - 10 X[ 2] - 8 X[ 3] - 8 X[ 4] - 10 X[ 5] - 9 X[ 6]
      - 7 X[ 7] - 8 X[ 8] - 8 X[ 9] - 8 X[ 10] - 10 X[ 11] - 8 X[ 12]
      - 8 X[ 13] - 8 X[ 14] - 7 X[ 15] - 5 X[ 16] - 5 X[ 17] - 5 X[ 18]
      - 5 X[ 19] - 5 X[ 20] - 6 X[ 21] - 6 X[ 22] - 6 X[ 23] - 6 X[ 24]
      - 6 X[ 25] - 7 X[ 26] - 7 X[ 27] - 7 X[ 28] - 7 X[ 29] - 7 X[ 30]
      + L =    0

 27]  L >=   40

 28]- 7 X[ 1] - 7 X[ 2] - 8 X[ 3] - 8 X[ 4] - 7 X[ 5] - 8 X[ 6]
      - 7 X[ 7] - 8 X[ 8] - 8 X[ 9] - 8 X[ 10] - 9 X[ 11] - 8 X[ 12]
      - 9 X[ 13] - 9 X[ 14] - 10 X[ 15] - 7 X[ 16] - 7 X[ 17]
      - 7 X[ 18] - 7 X[ 19] - 7 X[ 20] - 6 X[ 21] - 6 X[ 22] - 6 X[ 23]
      - 6 X[ 24] - 6 X[ 25] - 5 X[ 26] - 5 X[ 27] - 5 X[ 28] - 5 X[ 29]
      - 5 X[ 30] + W =    0

 29]  W >=   40  

END
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