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ABSTRACT 
 In this paper, variational iteration method and homotopy perturbation method are applied to 
different forms of diffusion equation. The diffusion equations have found wide applications in heat 
transfer problems, theory of consolidation and many other problems in engineering. The methods 
proposed to solve the diffusion equations herein have been applied to a variety of problems in the 
recent past, and have proved to yield highly accurate solutions. Comparison is made between the 
exact solutions and the results of the variational iteration method (VIM) and homotopy perturbation 
method (HPM) in order to verify the accuracy of the results, revealing the fact that these methods are 
very effective and simple.  
 
Keywords:  homotopy perturbation method (HPM); variational iteration method (VIM); diffusion 
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1. INTRODUCTION 
Diffusion equations have important 
applications in various fields of applied 
mathematics. In soil mechanics applications, 
Terzaghi [1] showed that the theory of one 
dimensional consolidation is governed by the 
diffusion equation. Many other applications 
have been mentioned in the literature for 
different variations of the diffusion equation 
[2-4]. It is of prime importance therefore, to 
develop effective solution procedures for this 
equation.  
 
Aside from analytical solutions, finite 
difference methods have been traditionally 
used to solve the diffusion equation. In this 
paper, the variational iteration method (VIM) 
[5-9] and the homotopy perturbation method 
(HPM) [10-14] have been successfully applied 
to solve the diffusion equations. These 
methods were introduced to overcome the 
shortcomings of the conventional perturbation 
methods, which are dependent on assuming 
small parameters and therefore the results are  
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valid only for small values of the small 
parameter chosen. Specifically, the VIM 
provides the solution (or an approximation to 
it) to ordinary and partial differential equations 
as a sequence of iterates and does not require 
that the nonlinearities be differentiable with 
respect to the dependent variable and its 
derivatives. The merits of this method make it 
attractive for application to problems in 
different fields of applied mathematics.         
      In the following sections, an overview of 
VIM and HPM is presented, followed by the 
application of these methods to both linear and 
nonlinear forms of the diffusion equation.  
 
2. Basic idea of homotopy-perturbation 
method 
To explain this method, let us consider the 
following function: 

( ) ( ) 0,A u f r r− = ∈Ω                              (1) 
 
with the boundary conditions of: 

( , ) 0, ,
u

B u r
n
∂

= ∈Γ
∂

                                  (2) 
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where A , B , ( )f r  and Γ  are a general 
differential operator, a boundary operator, a 
known analytical function and the boundary of 
the domain Ω , respectively. 
Generally speaking the operator A  can be 
divided in to a linear part L and a nonlinear 
part ( )N u . Eq. (1) can therefore, be written as: 
 

( ) ( ) ( ) 0,L u N u f r+ − =                                 )3(  
 
By the homotopy technique, we construct a 
Homotopy ( , ) : [0,1]v r p RΩ× →  which 
satisfies 

[ ]( , ) (1 ) ( ) ( ) ( ) ( ) 0,0
[0,1], ,

H v p p L v L u p Av f r

p r

= − − + − =

∈ ∈Ω

⎡ ⎤⎣ ⎦   (4)                

 
Or 
 [ ]( , ) ( ) ( ) ( ) ( ) ( ) 0,0 0H v p L v Lu pLu p N v f r= − + + − =  )  5 (

       
where [0,1]p ∈  is an embedding parameter, 
while 0u  is an initial approximation of Eq. (1), 
which satisfies the boundary conditions. 
Obviously, from Eqs. (4) and (5) we will have: 
 

( , 0) ( ) ( ) 0,0H v L v L u= − = )                         6 (

                       
( ,1) ( ) ( ) 0,H v A v f r= − =                           (7) 

 
The changing process of p from zero to unity is 
just that of ( , )v r p from 0u  to ( )u r .In 
topology, this is called deformation, while 

( ) ( )0L v L u− and ( ) ( )A v f r− are called 

homotopy. 
 
According to the HPM, we can first use the 
embedding parameter p as a “small 
parameter”, and assume that the solutions of 
Eqs. (4) and (5) can be written as a power 
series in p: 
 

2 ...,0 1 2v v pv p v= + + +                           (8) 

 
Setting 1p =  yields in the approximate 
solution of Eq. (8) to: 
 

lim ,0 1 21
u v v v v

p
= = + + +

→
L                     (9) 

       
The combination of the perturbation method 
and the homotopy method is called the HPM, 

which eliminates the drawbacks of the 
traditional perturbation methods while keeping 
all its advantage. 
 
The series (9) is convergent for most cases. 
However, the convergent rate depends on the 
nonlinear operator ( )A v . Moreover, He [10] 
made the following suggestions: 
• The second derivative of ( )N v with respect 

to v must be small because the parameter 
may be relatively large, i.e. 1p → . 

• The norm of 1 NL
v

− ∂
∂

 must be smaller than 

one so that the series converges. 
 
3. Basic idea of variational iteration method 
To clarify the basic ideas of VIM, we consider 
the following differential equation: 
 

( ),Lu Nu g t+ =                                     (10) 
 
where L  is a linear operator, N is a nonlinear 
operator and )(tg is a homogeneous term. 
According to VIM, we can write down a 
correction functional as follows: 
 

( ) ( ) ( ) ( ) ( )( )∫ −++=+

t

nnnn dguNLututu
01

~ ττττλ  (11) 

where λ  is a general lagrangian multiplier 
which can be identified optimally via the 
variational theory. The subscript n indicates 
the nth approximation and nu  is considered as 
a restricted variation, i.e. 0~ =nuδ . 
 
4. Numerical illustrations: 
In order to illustrate the ability of VIM and 
HPM to solve the diffusion equation, we 
consider two forms of the diffusion equation.  
 
Example 1: First, consider the simple form of 
the equation [15]:  

2

2( , ) ( , ) , 0 1, 0 1u x t u x t x t
t x
∂ ∂

= ≤ < ≤ ≤
∂ ∂        (12) 

 
While in reality the value of x and t would vary 
between [0, l] and [0, t], the range [0, 1] given 
in Eq. (12) indicates a normalization of the 
variables relative to their maximum value. The 
exact solution along with the initial and 
boundary conditions of Eq. (12) are known to 
be: 

2( )( , ) sin( ), 0 1, 0 1tU x t e x x tπ π−= ≤ ≤ ≤ ≤  (13) 
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To solve Eq. (12) by means of HPM, we 
consider the following process after separating 
the linear and nonlinear parts of the equation. 
A homotopy can be constructed as follows: 

2

0 2( , ) (1 ) ( ( , ) ( , ) ( , ) ( , ) ,H v p p p
t t t x
v x t v x t v x t v x t∂ ∂ ∂ ∂

= − +
∂ ∂ ∂ ∂

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                     (14) 
 
Substituting 0 1 ...v v pv= + + in to Eq. (14) 
and rearranging the resultant equation based on 
powers of p-terms, it can be written: 
 

0
0: ( , ) 0,p v x t

t
∂

=
∂

                               (15) 

 
2

1
1 02: ( , ) ( , ) 0,p v x t v x t

t x
∂ ∂

− =
∂ ∂

            (16) 

 
2

2
1 02: ( , ) ( , ) 0,p v x t v x t

t x
∂ ∂

− =
∂ ∂

           (17) 

 
 
with the following conditions: 

0( ,0) sin

( ,0) 0 1,2,.......i

v x x

v x i

π=

= =
(18) 

 

The effective initial approximation for 0v  may 
be obtained from the conditions stated in Eq. 
(18) and therefore solutions of Eqs. (15-17) 
may be written as follows: 
 

0 ( , ) sin( )v x t xπ=                                      (19) 
2

1( , ) sin( )v x t x tπ π= −                              (20) 

4 2
2 ( , )

1 sin( )
2

v x t x tπ π=                           (21) 

 
In the same manner, the rest of components 
were obtained using the Maple package. 
According to the HPM, we can conclude that: 
 

0 1( , ) lim ( , ) ( , ) ( , ) ... ,

1

u x t v x t v x t v x t

p

= = + +

→
      (22) 

 
 
Therefore, substituting the values 
of 0 ( , )v x t , 1 2( , ), ( , )v x t v x t   from Eqs. (19-21) 
in to Eq. (22) yields: 

2 4 2( , ) sin( ) sin( )
1sin( )
2

u x t x x t x tπ π π π π= − +        (23) 

 

Further manipulation of Eq. (23) will give: 
2 4 2( , ) sin( )(1

1 )
2

u x t x t tπ π π= − +           (24) 

   
It should be noted that Eq. (24) is the result of 
only three terms calculated from Eqs. (15-17). 
If further calculation of higher powers of p 
were to be derived, then it would be clear that 
the second part on the right hand side of Eq. 
(24) i.e 12 4 2(1 )

2
t tπ π− + is the expansion of 

series 
2te π− and therefore Eq. (24) will take 

the following form: 
 

2

( , ) sin( ) tu x t x e ππ −=                            (25) 
 
which is the exact solution of Eq. (12). 
 
Now, we will show that Eq. (12) may be 
effectively solved by means of the VIM to 
reach the same exact solution. In order to do 
so, one can construct the following correction 
functional, 

2

20

( , ) ( , )1

( , ) ( , )
t

n n

u x t u x tnn

u x u x d
x

λ τ τ τ
τ

= ++
⎛ ⎞∂ ∂

−⎜ ⎟∂ ∂⎝ ⎠
∫

        (26) 

 
Stationary conditions for Eq. (26) can be 
obtained as follows: 

                  
0,

1 0,
t

t

τ

τ

λ

λ
=

=

′ =

+ =
                             (27) 

We obtain the lagrangian multiplier: 
1λ = −                                                         (28) 

 
As a result, we obtain the following iteration 
formula: 
 

2

20

( , ) ( , )1

( , ) ( , )
t

n n

u x t u x tnn

u x u x d
x

τ τ τ
τ

= ++
⎛ ⎞∂ ∂

− +⎜ ⎟∂ ∂⎝ ⎠
∫

      (29) 

 
The above formulation needs to start with an 
initial approximation which satisfies the initial 
conditions. Obviously, in this case the initial 
approximation may be obtained from the initial 
condition of the problem, i.e. 
 

0 ( , ) sin( )u x t xπ=                                     (30) 
 
Using the above variational formula (29) and 
substituting the initial approximation from Eq. 
(30), it can be written: 
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1

2

20

( , ) sin( )

sin( ) sin( )
t

u x t x

x x d
x

π

π π τ
τ

= +

⎛ ⎞∂ ∂
− +⎜ ⎟∂ ∂⎝ ⎠

∫
       (31) 

 
The rest of the components of the iteration 
formula can be obtained, each time by 
replacing the approximation from the previous 

iteration into the new iteration formula. 
Solving Eq. (31), u1(x,t) will be obtained as: 
 

2
1( , ) sin( )( 1 )u x t x tπ π= − − +                      (32) 

 
The second iteration can then be obtained 
following the same procedure. Therefore,  

 
2

2

2
2 2

20

( , ) s in ( ) ( 1 )

( s in ( ) ( 1 )) ( s in ( ) ( 1 ))
t

u x t x t

x x d
x

π π

π π τ π π τ τ
τ

= − − + +

⎛ ⎞∂ ∂
− − − + + − − +⎜ ⎟∂ ∂⎝ ⎠

∫
                   (33) 

   
 
Experience with the VIM has shown that in 
most cases only two iterations will be 
sufficient to achieve the answer. In this case, 
solving Eq. (33) will give: 

2 4 2
2

1( , ) sin( )(2 2 )
2

u x t x t tπ π π= − +          (34) 

 
It can be seen that if further iterations are 
added to the above calculations, the second 
part of the right hand side of Eq. (34) will form  

 

the series expansion of 
2te π− . Therefore once 

again the exact solution of the diffusion 
problem is achieved through the VIM. Figure 
1 shows variation of u(x,t) for several values of 
t obtained from solution of VIM and HPM for 
Eq.(12). Furthermore, three dimensional 
comparison of exact solution and results of 
HPM and VIM are plotted in Figure 2 which 
reveals the high agreement between the results.  

 

Fig 1. Results of VIM, HPM and exact                            Fig 2. Results of exact solution, VIM and            
                   solution for Eq.(12)                                                                HPM for Eq. (12) 
 
 
 
Example 2: The second example used to 
illustrate the ability of the HPM and VIM in 
solving diffusion equations involves a  
  

 
 
nonlinear term. Consider the following 
diffusion equation with a nonlinear reaction 
term [16]: 
 

2
2 3

2( , ) ( , ) ( , ) ( , ) , 0 10, 0u x t u x t u x t u x t x t
t x
∂ ∂

= + − < < >
∂ ∂                                (35) 
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With the initial and boundary conditions taken 
from the exact solution given by [16]: 

( )

1 1( , ) ,
1 2x tu x t

eσ σ σ−= =
+

              (36) 

 
To solve Eq. (35) by means of HPM, we 
consider the following process after separating 
the linear and nonlinear parts of the equation. 
A homotopy can be constructed as follows: 

0

2
2 3

2

( , ) (1 ) ( ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ,

H v p p
t t

p
t

v x t v x t

v x t v x t v x t v x t
x

∂ ∂
= − − +

∂ ∂

∂

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞∂
− − +⎜ ⎟∂⎝ ⎠

      (37) 

Substituting 0 1 ...v v pv= + + in to Eq. (37) 
and rearranging the resultant equation based on 
powers of p-terms, one has: 

 

                                                    0
0: ( , ) 0,p v x t

t
∂

=
∂

                                                              (38) 

                                  
2

1 2 3
0 0 1 02: ( , ) ( , ) ( , ) ( , ) 0,p v x t v x t v x t v x t

x t
∂ ∂

− − + + =
∂ ∂

                          (39) 

            
2

2 2
1 0 1 0 1 22: ( ( , )) 3 ( , ) ( , ) 2 ( , ) ( , ) ( ( , )) 0,p v x t v x t v x t v x t v x t v x t

x t
−

∂ ∂
+ − + =

∂ ∂
                   (40) 

 

With the following conditions: 

            
(0.7071 )

1( ,0)0 1

( ,0) 0 1,2,.......

xx
e

xi

v

v i

=
+

= =
                                                     (41) 

 

With the effective initial approximation for 0v  
from the conditions (41) and solutions of Eqs. 
(38-40) may be written as follows: 
 

                                         0 (0.7 )( , )
1 ,

1 xv x t
e

=
+

                                                                        (42) 

 

                                

7 7( ) ( )
10 10

1 7( ) 310

( , )

49 51
,

100(1 )

x x

xv x t

te e

e
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠

+
                                                                (43) 

                 

7 7( ) ( )7 10 5( )2 10
21( )
10

2 7 7 21 14 7( ) ( ) ( ) ( ) ( )4 10 5 10 5 2

( , )

2589 2989 2601 2401

,
2 10 1 5 10 10 5

x x
x

x

x x x x x
v x t

e e
t e

e

e e e e e
=−

⎛ ⎞⎛ ⎞
− + −⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
× + + + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                     (44) 
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In the same manner, the rest of components  
were obtained using the Maple package. 
According to the HPM, we can conclude that: 
 

( , ) lim ( , ) ( , ) ( , ) ... ,0 1u x t v x t v x t v x t= = + +                                                                                (45) 

                1p →  
Therefore, substituting the values of 

0 ( , )v x t , 1 2( , ), ( , )v x t v x t   from Eqs. (42-44) in 
to Eq. (45) yields: 

                            

7 7( ) ( )
10 10

7(0.7 ) ( ) 310

7 7( ) ( )7 10 5( )2 10
21( )
10

7 7 21 14 7( ) ( ) ( ) ( ) ( )4 10 5 10 5 2

( , )

49 51
1

1
100(1 )

2589 2989 2601 2401

,
2 10 1 5 10 10 5

x x

xx

x x
x

x

x x x x x

u x t

te e

e
e

e e
t e

e

e e e e e

= −

⎛ ⎞
+⎜ ⎟

⎝ ⎠+
+

+

⎛ ⎞⎛ ⎞
− + −⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
× + + + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                            (46) 

Before comparing the results obtained from HPM  
with the exact solution, the VIM is used to solve  
the problem as well. To solve Eq. (35) by means  
of VIM, one can construct the following  
correction functional, 
 

2
2 3

20

( , ) ( , )1

( , ) ( , ) ( , ) ( , )
t

n n n n

u x t u x tnn

u x u x u x u x d
x

λ τ τ τ τ τ
τ

= ++
⎛ ⎞∂ ∂

− − +⎜ ⎟∂ ∂⎝ ⎠
∫

                                                        (47) 

Its stationary conditions can be obtained as follows: 
 

                                        
0,

1 0,
t

t

τ

τ

λ

λ
=

=

′ =

+ =
                                                                                    (48) 

We obtain the lagrangian multiplier: 

                                          1λ = −                                                                                           (49) 

As a result, we obtain the following iteration formula: 

               2
2 3

20

( , ) ( , )1

( , ) ( , ) ( , ) ( , )
t

n n n n

u x t u x tnn

u x u x u x u x d
x

τ τ τ τ τ
τ

= −+
⎛ ⎞∂ ∂

− − +⎜ ⎟∂ ∂⎝ ⎠
∫

                                        (50) 

Now we start with an arbitrary initial approximation 

that satisfies the initial condition: 
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                                             0 (0.7071 )

1( , )
1 xu x t

e
=

+
                                                                 (51) 

Using the above variational formula (50), we have: 

                              
1 0

2
2 3

0 0 0 020

( , ) ( , )

( , ) ( , ) ( , ) ( , )
t

u x t u x t

u x u x u x u x d
x

τ τ τ τ τ
τ

= −

⎛ ⎞∂ ∂
− − +⎜ ⎟∂ ∂⎝ ⎠

∫
                         (52) 

  

Substituting Eq. (51) in to Eq. (52) and after  

simplifications, we have: 

                                        
(0.7 ) 1.4

1 (0.7 ) 3 (1.4 ) (0.7 )

0.01(100 200 1001( , )
1 ) 49 51 )

x x

x x x

e e
u x t

e e t e t

⎛ ⎞+ + +
= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

                 (53) 

 
and so on. In the same way the rest of the components  
of the iteration formula can be obtained. The comparison  
of the results is illustrated in Figs. 3 and 4. 
 

 
 

Fig 3. Two dimensional plot for results of VIM,               Fig 4. Three dimensional plot for results of  
                 HPM and exact solution                                                     VIM, HPM and exact solution 

 
 
 
5. CONCLUSIONS 
Homotopy perturbation method and variational 
iteration method are employed successfully to 
study two different forms of diffusion 
equation. In conclusion, HPM and VIM 
provide highly accurate numerical solutions for 
linear and nonlinear problems. As it is 
mentioned, these methods avoids linearization 
and physically unrealistic assumptions. Finally, 
comparison with exact solution reveals that 
homotopy perturbation method and variational  

 
iteration method are remarkably effective for 
solving nonlinear problems.  
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