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ABSTRACT 
 PURPOSE. The purpose of our paper is to investigate the interactions between the immune system 
of vertebrates and infectious pathogens such as viruses. METHODS. We use methods of 
mathematical modeling and computer simulations in order to study the dynamics of the interacting 
populations. RESULTS. The numerical results present possible outcomes of the competition 
between viruses and immune cells. The immunological meaning of the computational results is 
explained. CONCLUSIONS. The results of the numerical analysis of the investigated mathematical 
model illustrate typical types of behavior of viral infections and confirm the usefulness of 
mathematical methods in the field of the immunology.  
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INTRODUCTION 
The immune system is a remarkably adaptive 
defense system that has evolved in 
vertebrates to protect them from invading 
pathogenic microorganisms and cancer. The 
most important features of any immune 
system are: (i) the ability to distinguish host 
cells, tissues and organs from foreign cells, 
molecules, particles etc., called “nonself”, 
that might enter the body of the host; (ii) the 
ability of eradication of foreign invaders, 
some of which are very dangerous; (iii) the 
ability of recognition and destruction of 
altered self-substances that have been 
modified by injury or disease like cancer (1).   
 
Immunity has both nonspecific and specific 
components. With respect to this, the immune 
system may be subdivided into natural (also 
called innate or nonspecific) immune system 
and adaptive (called also acquired or specific)  
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immune system (2). Innate, or nonspecific, 
immunity refers to the basic resistance to  
disease that an individual is born with. The 
innate immunity reacts in nonspecific ways 
by the use of various physical barriers and 
changes as well as immune cells that possess 
no memory and have low level of specificity. 
Most of the microorganisms encountered by a 
healthy individual are readily cleared within a 
few days by nonspecific defense mechanisms 
without enlisting a specific immune response. 
When an invading microorganism or tumor 
eludes the nonspecific host defense 
mechanisms, a specific immune response is 
enlisted. Innate defense mechanisms provide 
the first line of host defense against invading 
pathogens until the acquired immune 
response develops. Acquired, or specific, 
immunity has evolved in vertebrates. It 
requires the activity of a functional immune 
system, involving cells called lymphocytes 
and their products. The acquired immunity 
specifically recognizes the physical structure 
of the invading pathogens and cancer cells. It 
is able to improve its reaction and functions 
in a better way against second and every 
following encounter with the same antigen. 
That is why it is also called adaptive 
immunity (3). The acquired immunity plays 
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the major role in the defense against foreign 
pathogens (1-5).  
 
The key cells in adaptive immunity are B 
lymphocytes (B cells) and T lymphocytes (T 
cells). Two major populations of T cells exist: 
T helper cells (Th) and cytotoxic T 
lymphocytes (CTLs). Both populations of T 
cells are involved in the first form of acquired 
immunity called cell-mediated (or cellular) 
immunity (4,5). CTLs are able to destroy 
altered self-cells, including virus-infected 
cells and cancer cells. Th cells secrete 
numerous cytokines, which are required for 
activation and proliferation of T cells, B cells 
and antigen presenting cells (APCs). B cells 
give rise to the second form of the acquired 
immunity called humoral immunity (4,5). On 
contact with antigens, B cells proliferate and 
differentiate. Some of them produce secreted 
antibodies (Abs) (immunoglobulins), which 
bind to and help eliminate the antigens or 
cancer cells. Interactions between T and B 
cells as well as APCs, are critical to the 
development of the specific immunity. In 
experimental and clinical observations 
foreign antigens have been shown to induce 
both humoral and cell-mediated immune  
responses.  
 
These two types of adaptive immunity have 
been developed in higher organisms due to 
the existence of two different kinds of 
pathogens that are able to infect the host 
body. Some of pathogens are intracellular and 
other are extracellular pathogens. Examples 
of the first type of pathogens are viruses and 
intracellular bacteria. They are able to enter 
the host cells and use their metabolic 
machinery in order to replicate. On the other 
side, extracellular microorganisms, toxins, 
extraneous chemicals etc. are located outside 
the host cells and therefore they belong to the 
group of extracellular pathogens. The fight 
against intracellular pathogens is performed 
primarily by the cell-mediated acquired 
immunity. The elimination of extracellular 
pathogens is a function of the humoral 
acquired immunity (2-5). 
 
The majority of the intracellular pathogens 
are viruses. Their life cycle can include 
intracellular as well as extracellular stages. 
Viruses consist of genetic material wrapped 
up in a protein coat (6). In order to reproduce, 
viruses have to enter susceptible cells 
(usually via surface cell receptors) and use 

the metabolic machinery of the host cells. 
After being taken in the host cell, the virus 
uncoats (i.e. it loses the protein coat) and the 
viral genome is expressed. Then this genome 
is both replicated and expressed thus 
generating new viral proteins. The further 
association of the newly produced viral 
proteins with viral genomes results in 
building of new viral particles. They can 
leave the infected cells or destroy them (6).   
 
MATERIALS AND METHODS 
Various methods such as detailed molecular 
studies, in vitro and in vivo experiments etc. 
have been successfully used in immunology 
for investigation of the interactions between 
immune system and foreign pathogens (6). In 
the present paper we apply methods of 
mathematical modeling and computer 
simulations for analysis of the acquired 
immune response to viral infection.  
 
In the field of immunology mathematical 
models have been utilized for clarifying the 
factors that are important to explain 
experimental and clinical data. Furthermore, 
mathematical modeling methods have been 
used for defining these factors in precise 
terms as well as for suggesting experiments 
for calculation of these factors (7). Analyses 
and simulations of mathematical models have 
contributed to reduction of the amounts of 
experiments needed for successful drug 
design (8-10). Very useful is the ability of 
mathematical models to describe and predict 
the time dynamics of the populations of 
infections and immune cells, the interactions 
between which are very complicated and 
nonlinear (11,12).  
 
In this paper we analyze numerically the 
recently proposed mathematical model 
describing the interactions between the virus 
and the acquired immune system (13,14), 
which is a generalization of a model of 
humoral response (15,16) and of a model of 
cellular immune response to virus (17). The 
mathematical model is developed in the 
framework of the so called “kinetic theory for 
active particles” (10,11). This approach in the 
context of biological processes has been used 
for the first time by Jager and Segel (18) 
being related to a certain population of 
interacting insects. Jager and Segel have 
introduced and utilized the concept of 
dominance of different individuals. The 
application of the kinetic theory of active 
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particles to immunology has been introduced 
by Bellomo and Forni for modeling the 
growth of cancer (19). This modeling 
approach utilizes a variable u that describes 
the biological activity of the interacting 
populations, i.e. the ability of the cells to 
express their main functions (according to 
their role in the organism). The interactions 
between different cells and particles can 
either change the existing state or cause 
proliferation or destruction.  The physical 
system consists of cells or particles that 
belong to N interacting populations denoted 
by the subscript i. The activation state of each 
cell or particle is denoted by the variable u 
whose value spans in the interval [0,1]. The 
statistical state of the whole system can be 
described by the function  
 

),...,,( 21 Nffff =  
 
where the functions 

),,( utfi
+→× RTfi ]1,0[],0[: denote the 

distribution densities of the populations 
labelled by the index i at time t  belonging to 
some interval [0,T]. The concentrations of 
individuals from the corresponding 
populations are denoted by  

      ∫=
1

0

),()( duutftn ii                              (1) 

The mathematical model proposed in (13,14) 
describes the interactions between the 
following five important populations: (i) the 
population of uninfected T helper cells, 
denoted by the subscript i=1; (ii) the 
population of infected T helper cells, denoted 
by the subscript i=2; (iii) the population of 
virus, denoted by the subscript i=3; (iv) the 
population of antibodies, denoted by the 
subscript i=4; (v) the population of CTLs, 
denoted by the subscript i=5. 
 
For simplicity, the distribution function of 
uninfected T helper cells is assumed to be 
independent of their activation states: 
 

0],1,0[),(),( 11 ≥∈∀= tutnutf  
 
The activation state of the infected T helper 
cells denotes the virus mediated killing rate of 
the infected cells as well as the rate of the 
reproduction of the virus inside the host cell. 
The activation state of free viruses denotes 
their ability to infect the susceptible T helper 
cells. The activation state of the  antibodies is 
supposed to denote their capability to destroy 
free viruses and to lower their activation 
states. The state of activity of the CTLs is 
assumed to denote their ability to destroy the 
infected T helper cells. 
 
The considered mathematical model is the 
following system of partial integro-
differential equations. 
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complemented by nonnegative initial conditions  

                                 .5,4,3,2),(),0(,)0( )0()0(
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All parameters included in the model are 
assumed to be nonnegative and .2 13

)2(
13 dp =  

The equation (2) of the model describes the 
dynamics of the susceptible uninfected cells. 
The function )(1 tS characterizes the rate of 
production of uninfected T helper cells by the 
organism. The parameter 11d  characterizes 
their natural death rate. The parameter 13d  
characterizes the rate of viral infectivity of 
uninfected T helper cells.  
 
The equation (3) of the model describes the 
dynamics of the infected cells. The parameter 

)2(
13p  characterizes  the rate of viral infectivity 

of uninfected T helper cells. The parameter 
22d  characterizes the rate of killing of the 

infected cells by the virus. The parameter 25d  
characterizes the rate of killing of the infected 
cells by CTLs. The parameter 22c  
characterizes the possible increase in the 
activation states of the infected cells.    
 
The equation (4) of the model describes the 
dynamics of the free virus particles. The 
parameter )3(

22p  characterizes  the rate of viral 
replication inside the infected cells. The 
parameter 33d  characterizes the natural death 
rate of the free virus particles. The parameter 

34d  characterizes the rate of killing of the 
free viruses by antibodies. 
 
The equation (5) of the model describes the 
dynamics of the antibodies. The parameter 

)4(
34p  characterizes  the rate of their 

production. The parameter 44d  characterizes 
the natural death rate of antibodies. 
The equation (6) of the model describes the 
dynamics of the CTLs. The parameter )5(

13p  
characterizes  the rate of their generation. The 
parameter 55d  characterizes the natural death 
rate of CTLs. 
The model (2)-(7) has been solved after its 
discretization with respect to the activity 
variable u. The resulting system of ordinary 
differential equations has been solved by the  

 
use of ode15s code from the Matlab ODE 
suite (20) with 310Re −=lTol  and 

410−=AbsTol . The concentrations )(tni  of 
populations 5,...,2=i  have been computed 
from the obtained approximate solutions for 

),( utfi  by using Eq. (1). 
  
RESULTS 
As initial conditions for the model system 
(2)-(6) we assume the presence of uninfected 
T helper cells, antibodies, free virus particles, 
and the absence of infected T helper cells and 
CTLs, setting 1)0(1 =n , 1.0)0()0( 43 == ff , 

0)0()0( 52 == ff . In addition, it is assumed 
that 100)(1 =tS .  
 
In the first part of our simulation we study the 
interactions between virus infection and 
acquired immunity when only its humoral 
part is active while the cellular immunity is 
passive. We model this particular case by 
setting 0)5(

135525 === pdd . The role of the 
rate of killing of the infected cells by the 
virus and of the possible increase in the 
activation states of the infected cells modeled 
by the parameters 22d  and 22c  respectively is 
analyzed in (15). In (21) we have analyzed 
the role of the rate of viral infectivity of 
uninfected T helper cells modeled by 
parameter 13d . We have shown that when the 
value of 13d  is not very high, the humoral 
immune response can be successful in the 
fight against the infection even in the absence 
of cellular immune responce. When the value 
of 13d is high, the humoral immune response 
is not able to clean the infection alone. More 
susceptible cells become infected. This 
results in a higher replication of the virus, 
which can be released and infect new host 
cells. These two cases are illustrated in 
Figure 1 presenting the dynamics of infected 
cells for values 10013 =d  and 10813 =d . The 
remaining parameters are set as follows: 

1522 =c , 

=11d =33d =34d =44d =)3(
22p .100)4(

34 =p
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Fig. 1 
 

 
In cases of high viral infectivity, additional 
cellular immune response may be needed for 
the successful clearance of the virus. The 
second part of our numerical analysis is 
devoted to the cooperative humoral and 
cellular acquired response against the 
infection. As initial conditions we assume 
additionally the presence of CTLs: 

1.0)0(5 =f , and change the values of the 

following parameters: 100)5(
1355 == pd . We 

set 10813 =d  and investigate numerically the 
role of the rate of killing of the infected cells 
by CTLs described by parameter 25d . Low 
values of this parameter correspond to weak 
cellular immunity (or even its absence for 

025 =d ). In such cases the acquired 
immunity is unable to fight off the infection. 
Possible dynamics of the population of 
infected cells is illustrated on Figure 2 by 
graphs corresponding to 025 =d  and 

10025 =d  when the impact of the cell-
mediated response to the adaptive immunity  

 
is not strong enough for the successful 
clearance of the infection. However for 
higher values of 25d  the cellular immunity 
helps the acquired defense in reducing the 
virus load to very low levels. An example of 
such a case is presented by the graph 
corresponding to 100025 =d  on Figure 2.   
 
DISCUSSION 
Our numerical experiments of the presented 
mathematical model of the competition 
between the acquired immunity and viral 
infection illustrate several typical outcomes 
of this complex interaction. They confirm the 
experimental observations of the failure of 
the humoral immunity in some cases to cope 
with the infection alone. Our numerical 
results show that in such cases an additional 
cell-mediated response can be very helpful. 
Therefore, mathematical models of 
immunological phenomena may be useful for 
better understanding of processes occurring in 
living organisms. 
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Fig. 2 
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