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ABSTRACT 
A linear instability analysis of an inviscid annular liquid sheet emanating from an atomizer subjected to 
inner and outer swirling air streams has been carried out. The dimensionless dispersion equation that 
governs the instability is derived. The dispersion equation solved by Numerical method to investigate 
the effects of the liquid–gas swirl orientation on the maximum growth rate and its corresponding 
unstable wave number that it produces the finest droplets. 
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INTRODUCTION 
 
Liquid atomization is of importance in 
numerous applications such as fuel injection in 
engines, gas turbine engines, industrial 
furnaces, agricultural sprays [1]1. 
Pressure swirl atomizers are being recognized 
as ideal atomizers for the direct injection spark 
ignition (DISI) engines or gasoline direct 
injection (GDI) engines because they generate 
a fine fuel spray with moderate injection 
pressure. The advantageous characteristics of 
pressure swirl atomizer include simplicity of 
construction, ease of manufacture even in 
small size, reliability, good atomization 
quality, low clogging tendencies, and low 
pumping power requirements [2]. 
The stability of liquid jets and sheets has 
received much attention since the classical 
studies of Rayleigh and Squire. For 
authoritative reviews of liquid sheet and jet 
instability and breakup, readers are referred to 
a recent monograph by Lin [3] and reviews by 
Sirignano and Mehring [4]. It is well 
established that the forces acting on a liquid 
gas interface including surface tension, 
pressure, inertia force, centrifugal force and 
viscous force result in the growth of 
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disturbances that lead to sheet or jet 
breakup[2].  
 

LINEAR INSTABILITY ANALYSIS 

2.1. Model assumptions 
The stability model considers a swirling 
inviscid annular liquid sheet subject swirling 
airstreams. Gas phases are assumed to be 
inviscid and incompressible.  
The basic flow velocities for liquid, inner gas 
and outer gas are assumed to be ),0,( rAU ll

 , 

),0,( rU i Ω  , ),0,( rAU oo  respectively and 

)(, 2 smAA lo  are Vortex  Strength and )1( sΩ  
is Angular velocity.  
Due to the swirling coaxial flow effect, 
centrifugal forces act on the annular liquid 
sheet. Additionally, inner and outer pressure 
forces are another type of forces acting on the 
inner and outer interfaces respectively. 
Furthermore, the liquid surface tension forces 
play an important effect on preventing the 
formation of a new surface. The sum of these 
forces determines weather the annular liquid 
sheet is going to breakup or remains stable [2].  
 
2.2. Linearized disturbance equations 
The governing equations for inviscid annular 
fluid flows are the continuity and Navier–
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Stokes equations that in cylindrical coordinate 
system are: 
Continuity equation: 
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The disturbances are assumed to have the 
forms: 

)())(ˆ),(ˆ),(ˆ),(ˆ(),,,( tnkxierprwrvrupwvu ωθ −+′=′
                                       (2.5) 

where ^ indicates the disturbance amplitude 
which is a function of r only. For the temporal 
analysis, the wave number k and n are real 
while frequency ω is complex. The imaginary 
part of ω reflects the growth rate of the 
disturbance. The displacement disturbances at 
the inner and outer interfaces are: 

;ˆ),,( )( tnkxi
jj etx ωθηθη −+= oij ,= (2.6) 

To obtain the linearized disturbance equations, 
let: 

pPpwWWvVuUU ′+=+==+= ,,,       (2.7) 

Where the over bar represents the assumed 
mean flow quantities and the prime indicates 
disturbance. 
The linearized disturbed equations for the 
liquid phase are written in vector form as:  
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The linearized disturbed equations for the inner 
and outer air are written in component form as 
Continuity equation: 
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Momentum equations: 
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where, rAWrWeandoij ooi =Ω== ,,  

Boundary conditions must be applied at the 
liquid interface. The first boundary condition is 
the kinematics condition   can   be expressed   
for the inner    interface at aRr = as: 
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And for the outer interface at bRr =  as: 
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The second boundary condition considers the 
balance between the surface stresses on both 
sides of the      liquid-gas interface, including 
the pressure jump across the interface due to 
surface tension and viscous forces. This 
boundary condition is known as the dynamic 
boundary condition and is given by: 
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The pressure disturbances can be obtained 
inside the liquid sheet, inner air and outer air 
after solving the equations to form of 
following respectively: 
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where, ( ) ( )krKkrI nn , are the nth order 
modified Bessel Function of  first and second 
kind respectively.  
The dispersion equation is obtained by 
substituting the pressure disturbances inside 
the liquid and gas phases into the dynamic 
boundary conditions at the two interfaces. The 
fourth order dispersion equation is obtained 
and   can be written in below form. The Final 

Dispersion Equation was solved numerically 
using the secant method.  
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3. RESULTS AND CONCLUSIONS 

For each pair of dimensionless 
parameters ),( kn , we solve fourth order non-
linear dispersion equation for the root 

lb URωω = with maximum imaginary part 
that represents the maximum growth rate of the 
disturbance. The results show that the highest 
unstable wave number is achieved by 
increasing the inner air swirl Weber number 
when it is applied on the second annular liquid 
sheet helical mode (n=2) utilizing the co-inner 
and counter-outer swirl orientation as shown in 
Figure 1.  
 

 

 

 

 

 

 

 

 

 

Figure 1. Effect of the inner air swirling on the disintegration of the second helical annular liquid sheet at 
9.0,10,01.0,15,25,35 ====== hWeWeWeWeWe sosoil
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The shortest breakup length is achieved by 
increasing the inner air swirl Weber number in 
the co-inner and co-outer swirl orientation.   

 

The growth rate can be related to the breakup 
length of the liquid sheet. Higher growth rate 
indicates shorter breakup length.  
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