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ABSTRACT 

Stochastic approximation for estimation (SAE) is a class of optimisation algorithms, which computes, 
to an approximation, the gradient and/or the Hessian of the objective function by varying all the 
elements of the parameter vector simultaneously and, therefore, requires only a few objective function 
evaluations to obtain first or second-order information. Consequently, these algorithms are 
particularly well suited to problems involving a large number of design parameters. In this study, their 
potentials are assessed in the context of non-linear (NN) system identification. To pursue this 
objective, a challenging modelling application is considered, that is, dynamic modelling of batch 
animal cell cultures from sets of experimental data. The performance of the optimisation algorithms is 
discussed in terms of efficiency, accuracy and ease of use. 
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INTRODUCTION 

The process of modelling requires an 
estimation of several unknown parameters 
from noisy measurement data. To achieve this 
aim, a least-squares or maximum–likelihood 
cost function (depending on the assumptions 
of the measurement noise) is usually 
minimised using a gradient-based 
optimisation method. 
∗  
 Several techniques for computing the 
gradient of the cost function are available, 
including finite difference approximation and 
analytic differentiation. This latter technique 
leads to back-propagation in neural networks 
or several sensitivity equations in the case of 
conventional first-principles models. 
 In the above-mentioned techniques, the 
computational expense required to estimate 
the current gradient direction, are directly 
proportional to the number of unknown model 
parameters, which become an issue for models 
involving a large number of parameters. This 
is typically the case in non-linear (NN) 
modelling, but can also occur when estimating 
parameters and initial conditions in first-
principles models. 

                                                 
∗Correspondence to: Nikolay Iv. Petrov, Trakia 
University – Stara Zagora, Yambol, Bulgaria, 
nikipetrov@lycos.com 

 In contrast to standard finite 
differences, which approximate the gradient 
by varying the parameters one at a time, the 
simultaneous perturbation (SP) 
approximation of the gradient proposed by 
Spall [5] makes use of a very efficient 
technique based on a simultaneous (random) 
perturbation in all the parameters. Hence, one 
gradient evaluation requires only two 
evaluations of the cost function. This 
approach has first been applied to gradient 
estimation in a first-order stochastic 
approximation (SA) algorithm [5] and, more 
recently, to Hessian estimation in an 
accelerated second-order stochastic 
approximation for estimation (SAE) algorithm 
[6]. 
 In previous works the authors applied 
the above–mentioned first- and second- order 
SA algorithms (1SAE and 2SAE) to weights 
and biases estimation in NNs and proposed 
several variations of the 1SAE algorithm [3, 
7]. These simulation studies were limited to 
relatively simple examples but demonstrated 
the efficiency and modest computational costs 
of 1SAE. The objective of this paper is to 
extend these studies by evaluating: 

• variants of 1SAE/2SAE algorithms, in 
which scaling of the gradient/Hessian 
estimates is introduced to avoid potential 
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large variations in the course of the 
optimisation process; 

• the performance of first- and second-order 
algorithms as applied to a challenging 
parameter estimation problem namely, 
identification of unknown parameters in a 
macroscopic model of batch animal cell 
cultures from experimental measurements 
of biomass, glucose, glutamine and lactate 
concentrations. 

This paper is organised as follows: Section 2 
introduces the basic principles of the first- and 
second-order SA algorithms used throughout 
this study. In section 3, the algorithms are 
applied to the maximum likelihood estimation 
of kinetic parameters and initial conditions of 
a bioprocess model from experimental 
measurements of several macroscopic 
component concentrations. Direct and cross-
validation results demonstrate the good model 
agreement.  Finally, section 4 is devoted to 
discussions and concluding remarks. 
 
SAE ALGORITMS 

Consider the problem of minimising a 
possibly noisy objective function ( )J θ  with 

respect to a vector θ  of unknown parameters. 
1 SAE is given by the following core 
recursion for the parameter vector θ  [3; 7]. 
This is shown by equation: 

(1) ( ) ( ) ( )1
ˆ ˆ ˆˆ.k k k k kt t a gθ θ θ+ = − , 

in which ka  is a non-negative scalar gain 

coefficient, and ( )ˆˆ k kg θ  is an approximation 

of the criterion gradient obtained by varying 

all the elements of ( )k̂ tθ  simultaneously, i.e. 
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where, kc  is a positive scalar and 

( )1 2, ,...,
T

k k k kp∆ = ∆ ∆ ∆  with 

symmetrically Bernouilli distributed random 
variables { }ki∆ . 
 In its original formulation, 1SAE makes 
use of decaying gain sequences { }ka and 

{ }kc in the form 

(3) 
( )1k

aa
A k α=
+ +

,  
( )1k

cc
k γ=
+

, 

which ensures asymptotic convergence 
results. However performance in finite 
samples can be different, and numerical 
experiments suggest that an adaptive gain 
sequence for parameter updating [1, 3, 5] can 
enhance convergence and stability (this is 
particularly true when solving a non convex 
parameter identification problem), i.e. 
(4) 

( ) ( ) ( )1 1. , 1, 1 .k k k ka a if J Jη η θ β θ− −= ≥ < +
(5)

( ) ( ) ( )1 1. , 1, 1 .k k k ka a if J Jµ µ θ β θ− −= ≥ < +
In addition to gain attenuation when the value 
of the criterion becomes worse, “locking” 
mechanisms [5, 6] are also applied, i.e. the 
current step is rejected and, starting from the 
previous parameter estimate, a new step is 
accomplished (with a new gradient evaluation 
and a reduced updating gain). The parameter 
β  in equations (4) and (5) represents 
permissible increase in the criterion before 
step rejection and gain attenuation occur. 
 A constant gain sequence kc c=  can 
be used for gradient approximation, the value 
c  being selected so as to overcome the 
influence of (numerical or experimental) 
noise. In the optimum neighbourhood, 
however, a decaying sequence in the form (3) 
is required to evaluate the gradient with 
enough accuracy and avoid an amplification 
of the “slowing down” effect as an optimum is 
approached (note that this phenomenon is 
even more pronounced in the case of SP 
techniques since the gradient information is 
more delicate to “extract” in the – usually 
rather “flat” – neighbourhood of the 
optimum). 
 Finally, a gradient smoothing (GS) 
procedure is implemented, i.e., gradient 
approximations are averaged across iterations 
in the following way 
(6)

( ) ( )1 0
ˆˆ. 1 . , 0 1, 0k k k k k k kG G g Gρ ρ θ ρ−= + − ≤ ≤ = , 

where, kρ  is decreased in a way similar to  
equations (4) and (5) when step rejection 
occurs (i.e. 1.k kρ µ ρ −=  with 1µ ≤ ) and is 

reset to its initial value 0ρ  after a successful 
step. 
 The use of these numerical artifices, i.e. 
adaptive gain sequences, step rejection 
procedure and gradient smoothing, 
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significantly improves the effective practical 
performance of the algorithm (which, in the 
following, is denoted “adaptive1SP-GS”) [1, 
2, 4]. 
 As relatively large excursions in the 
parameter space can be achieved, convergence 
can also be enhanced through scaling of the 
gradient estimate (2) at each iteration. This 
new feature is implemented here by 
normalising each direction of the gradient 
vector ( )ˆ k kg θ  with respect to its largest 
component (infinity norm scaling) 

(7) ( ) ( )
( )
( )1

ˆˆ
ˆ ˆ

ˆˆ
k k

k k k

k k

g
t t a

g

θ
θ θ

θ
+

∞

= − . 

 This latter version is denoted 1SP - 
GSS  (Gradient Smoothing and Scaling). 
 Inequality constraints can also be taken 
into account by a projection algorithm 
introduced in [4], i.e. the current parameter 
estimate is projected onto a closed set 
included in the admissible region in such a 
way that no function evaluation is required 
outside this latter region. In this study, bound 
constraints (e.g., positivity constraints) are 
handled in this way. 
 The second-order algorithms 2SAE are 
based on the following two core recursions, 
one for the parameter vector θ , the second 
for the Hessian ( )H θ  of the criterion [6]: 

(8) ( ) ( ) ( )1
1

ˆ ˆ ˆˆ. .k k k k k kt t a H gθ θ θ−
+ = − , 

(9) ( )k k kH f H= , 

(10) 1

1 ˆ
1 1k k k

kH H H
k k−= +
+ +

, 

where: ˆ
kH  is a per-iteration symmetric 

estimate of the Hessian matrix, which is 
computed from gradient approximations (or 
direct evaluations)  using a simultaneous 
perturbation approach, kH  is a simple sample 

mean, and kf  is a mapping designed to cope 
with possible non-positive –definiteness of  

kH . 
 Again, the algorithm requires only a 
small number of function evaluations – at 
least four criterion evaluations to contract the 
gradient and Hessian estimates – independent 
of the number of unknown parameters. 
 Several variants of the mapping kf  
have been considered in the literature: 

• regularisation through addition of a 

diagonal perturbation matrix with small 
positive elements [5];  

• a more elaborate regularisation technique 
recently proposed in which the eigenvalue 
matrix kΛ  of kH is first “corrected”, i.e. 
negative elements are replaced by a 
descending series of small positive 

eigenvalues, and a new matrix ˆ
kΛ  is 

defined. Then, the orthogonal matrix kP  
of eigenvectors is used to define the 

mapping ( ) ˆ. . T
k k k k kf H P P= Λ ; 

• a simplified version of the preceding 
approach in which the ”corrected” 

eigenvalue matrix ˆ
kΛ  is replaced by a 

constant diagonal matrix defined by the 
geometric mean of all the eigenvalues. 

 Mapping (a) is easy to implement but 
relatively delicate to tune in practical 
situations (selection of the elements of the 
perturbation matrix). Mappings are potentially 
more efficient, but more complex to 
implement. In addition, some tuning is still 
required (to select the small positive 
eigenvalues that are substituted to the negative 
elements of kΛ ). In this study, a simple, 
tuning-free, Hessian estimate is considered. 
Following an idea originally introduced in [2], 
a diagonal approximation of the Hessian is 
built, 
(11) ( ) ( ) ( ){ }ˆ ˆˆ 2k k k k k k k k k k kH diag g c g c cθ θ = + ∆ − − ∆ ∆ 

, 

where the notation indicates a component-
wise division of two vectors (in analogy with 
Matlab programming). 

 The gradients ( )ˆ.k k k kg cθ ± ∆  are 

obtained by one-sided approximation (in order 
to limit the number of function evaluations) 
(12)  
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, 

where, kc% is a positive scalar (the sequence 

{ }kc% can be chosen in similar way as { }kc , 
e.g. equation (3)) and 

( )1 2, ,...,
T

k k k kp∆ = ∆ ∆ ∆% % % % with 

symmetrically Bernouilli distributed random 

variables { }ki∆%  (independent of { }ki∆  in 
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equation (3)). 
 In the same spirit as Eq. (7), an infinity-
norm scaling is introduced, i.e.  

(13) 1

1 ˆ
1 1k k k

kH H H
k k−= +
+ +

, 

(14)  
( )k

k
k

abs H
H

H
∞

= , 

where, ( )abs ⋅  is a regularisation in which 
the absolute value of each of the (diagonal) 
elements of kH  is computed and 

kH
∞

represents the largest of these 

elements. 
 This latter algorithm is denoted 
“adaptive 2SP-DHS” ( 2nd - order 
Simultaneous Perturbation algorithm with 
Diagonal Hessian estimation and Scaling). 
 
MODELLING OF ANIMAL CELL 
CULTURES 

In [8] the authors propose a deterministic 
model of growth with constraints: 

(15) .d k
dt
σ σ= , 

where, d dtσ  is the intensity λ  of the 
growth of the cellular number, and k  is a 
coefficient with the sense of specific number 
growth. 
 The solution of this equation gives an 
exponential growth of the number of cells in 
the system: 
(16) ( ) ( )0.expt ktσ σ= . 
 Modifications of the proposed equation 
are possible. The restricting factors on the 
process dynamics are usually accounted for by 
variation of the coefficient k . If with 0α >  
is denoted the degree of influence of a given 
restricting factor, this equation can be 
presented as: 

(17) ( ). .d k
dt
σ α σ σ= − . 

 Consider batch animal cell cultures 
described by a simple macroscopic reaction 
scheme growth [6]: 
 

(18) ln ln
g

G G X
ϕ

ν →∧ , 
and scheme maintenance: 

(19) . . .
m

X X LG X X L
ϕ

ν ν ν+ → + , 
where, X , G , lnG  and L  represent 

biomass, glucose, glutamine and lactate, 
respectively, and lnGν , Xν  and  Lν  are 
pseudo-stoichiometric  coefficients. The 
symbol “→∧ ” means that the growth 
reaction is auto-catalysed by X and the 
presence of “ .X Xν ” on both sides of the 
maintenance reaction means that X  catalyses 
this latter reaction. 
 The growth rate gϕ  and the 

maintenance rate mϕ  are described by a 
general kinetic model structure proposed in 
[6]: 
(20)                             

( ) . ln .., , ln . . ln .g g G g GX G
g gX G G X G eγ γ βϕ α −= , 

(21) ( ) , , , ., . .m X m G m X X
m mX G X G eγ γ βϕ α −= . 

 Simple mass balances allow for the 
following dynamic model to be derived: 
(22) ( ), , lng

dX X G G
dt

ϕ= ,   ( ) 00X X= , 

(23) ( ),m

dG X G
dt

ϕ= − ,   ( ) 00G G= , 

(24)  ( )ln

ln , , lnG g

dG X G G
dt

ν ϕ= − ,   ( ) 0ln 0 lnG G= , 

(25) ( ). ,L m

dL X G
dt

ν ϕ= ,   ( ) 00L L= , 

where, ( ) ( ) ( ), , lnX t G t G t  and ( )L t  
denote the respective component 
concentrations. 
 Identification of bioprocess models is a 
delicate task and in [6], a systematic 
procedure is proposed, which allows the 
pseudo-stoichiometric coefficients to be 
estimated independently of the kinetic 
coefficients by minimising a maximum-
likelihood criterion. This procedure also 
considers the estimation of the most likely 
initial conditions (since the concentration 
measurements are corrupted by noise at each 
sampling time, including the initial one). 
 In this study, it is assumed that the 
pseudo-stoichiometric coefficients have 
already been estimated following the above-
mentioned procedure and that only the kinetic 
coefficients and the initial component 
concentrations have to be inferred from rare 
and asynchronous measurements of biomass, 
glucose, glutamine and lactate concentrations. 
The measurement equation is given by  
(26) ( ) ( ) ( )i i iy t x t tε= + , 1,...,i N= , 
where,

( ) ( ) ( ) ( ) ( )ln
T

i i i i ix t X t G t G t L t=    ,

( )iy t  and ( )itε  are the state, measurement  
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and noise vectors at time it , respectively. The 
measurement errors are assumed to be 
normally distributed, with noises having zero 
mean and variance matrix ( )iQ t . 
 Data are collected from seven batch 
experiments corresponding to different initial 
glucose and glutamine concentrations. Five of 
these experiments are used for parameter 
estimation, the two remaining ones being used 
for cross-validation tests. 
 The 28 unknown parameters (8 kinetic 
coefficients and 20 initial concentrations) are 
estimated by minimising a maximum 
likelihood cost function taking into account 
the measurement noises, i.e. 
(27) 

( ) ( )( ) ( )( )1
1

1

1 ˆ ˆmin min . .
2

N T

m i i i i i
i

J y x Q y x
θ θ

θ θ θ−

=

= − −∑ , 

where, ,i iy Q and ( )ˆix θ  are the 
measurement vector, the measurement error 
covariance matrix and the state estimate 
obtained by integration of the model equations 
(21-24) with the parameters θ  at time it , 
respectively. 
 The tuning parameters of 1SP-GS are 
selected as follows: 410 , 0,15c γ−= = (a 
very slowly decaying sequence kc  is used for 
gradient evaluation), 

6
0 10 ; 1,01; 0,99; 0a η µ β−= = = =  (no 

relative increase in the criterion is allowed), 

0 0,99ρ = . For 1SP-GSS, the same 

parameters are used, expert 3
0 10a −= . 

Starting with the measured initial 
concentrations (which are effected by 
measurement errors) and in initial guess for 
the kinetic parameters corresponding to a 
criterion value 1 65761mJ = , the 
minimisation problem (26) is repeated 10 
times with both algorithms. 
 
CONCLUSION 

The following inferences could be drawn: 

1. The simultaneous perturbation approach 
developed by Spall [3, 5] is a very 
powerful technique, which allows an 
approximation of the gradient of the 
objective function to be computed by 
effecting simultaneous random 

perturbations in all the parameters. 
2. Therefore, this approach is particularly 

well suited to problems involving a 
relatively large number of design 
parameters. 

3. In this study, variants of first- and second- 
order SP algorithms are considered and 
applied to the identification of the kinetic 
parameters and the initial conditions of a 
bioprocess model from experimental 
measurements of a few macroscopic 
components. 
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