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ABSTRACT 

In this paper, a new nonlinear neural network for solving the interval maximum flow problem is 

presented. The our nonlinear neural network is able to generate optimal solution to the interval 

maximum flow problem. The interval maximum flow problem in network is formulated as a special 

type of linear programming problem and it is solved by appropriately defined neural networks. The 

performance of the our neural network is demonstrated by means of illustrative example. 
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INTRODUCTION 

The maximum flow problem is one of the 

classic combinatorial optimization problems 

with much application such as electrical 

power, traffic communication and 

transportation computer network. This 

problem is one of the most fundamental 

problems with a wide variety of scientific and 

engineering application. But now we want  

presents maximum flow problem when the 

connected arcs in a transportation network are 

represented as interval numbers. The problem 

is to find a flow of maximum interval value on 

a network from a source to a sink. Interval 

maximum flow problem like maximum flow 

problem is a kind of linear programming 

problem. The linear programming problem 

was first solved by Dantzig with simplex 

method sixty years ago. The simplex method 

developed by him, is still the most widely used 

numerical algorithm. Although the simplex 

method is efficient and elegant, but the 

modern numerical algorithms are very 

efficient and useful to solve maximum flow 

problem. The classical augmenting path 

method to find a maximum flow through a 

network was developed by Ford and 

Fulkerson, see Ford, et al. (1). This adaptation 

of the simplex method for networks is 200 - 

300 times faster than the simplex method 

applied to general linear programs of the same 

dimensions. However they do not lend 

themselves to problems which require solution  

in real time. One promising approach to solve  

 

optimization problems in real time is to use the  

neural network approach. Researchers have 

proposed various dynamic solutions for 

constrained optimization problems. This 

approach was first proposed by Pyne in 1956 

and developed by Dennis Rybashov, 

Karpinskay and others. Several new dynamic 

solvers using artificial neural network models 

have been developed; see Hopfield, et al. (2), 

Kennedy, et al. (3), Xia, et al. (4). The 

numerical algorithms are also used like genetic 

algorithm to solve the network problems, see 

Leung, et al. (5). A neural network model for 

interval maximum flow problem are presented 

in this paper. It has a much faster  convergence 

rate.  This model are based on a nonlinear 

dynamical system. 
 

ARITHMETICS OF INTERVALS 

All lower case letters denote real numbers and 

the upper case letters denote the interval 

numbers or the closed intervals on R.  

 

  A =[ La , Ra ] ={a : La  ≤ a ≤ Ra  , a   R} 

 

where La  and Ra  are the left and right limit of 

the interval A on the real line R, respectively. 

If  La  = Ra  , then A=[a, a] is a real number. 

Interval A is alternatively represented as A 

=<m (A), w (A)>, where m(A) and w(A) are 

the mid- point and half-width (or simply be 

termed as `width') of interval A, i.e., 

      m(A) =
2

1
 ( La  + Ra ) 
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      w(A)= 
2

1  ( Ra  - La  )              

Let   = {+,-,×,÷} be a binary operation on 

the set of real numbers Then, A B ={a  b; 

a   A ; bB }defines a binary operation on 

the set of closed intervals. In case of  division 

it is assumed that 0B. 
 

If  is a scalar, then                                                            

  A = [ La  , Ra ] 









.0λif],aλ[a

0λif],aλ[a

LR

RL
         

The extended addition   and extended 

subtraction  are defined as follows: 

A   B = [ La  + Lb  , Ra  + Rb ] 

A  B  =  [ La  – Rb  , Ra  – Lb ]. 
 

The following equations also hold for A   B 

and A  B: 

m(A  B) = m(A) +m(B) 

m(A  B) = m(A) - m(B) 

w(A  B) = w(A) + w( B)  

w(A  B) = w(A) - w( B)    
 

Next we are going to propose another 

differentiation of  interval valued. If  there 

exists an interval C such that A=B+C, then C 

is called the Hukuhara difference. We also 

write C = A  B (Banks and  Jacobs ). Let  A 

= [ La , Ra ] and B = [ Lb , Rb ] be two closed 

intervals in R. If there exists a closed interval 

C = [ Lc , Rc ] such that A = B + C, then C is 

called the Hukuhara difference. Since A = B + 

C, it is easy to see that La = Lb + Lc  and Ra

= Rb + Rc , i.e., Lc  = La - Lb  and Rc = Ra + 

Rb . Therefore, this closed interval C exists if 

La - Lb    Ra - Rb  . In this case, C = [ La - Lb

, Ra - Rb ]  and we also write C = A  B. 

Therefore, when we say that the Hukuhara 

difference C = A  B exists, we implicitly 

means that 

 La - Lb    Ra - Rb  . 
 

On comparing intervals 

Here we find two transitive order relations 

defined over intervals: the first one as an  

extension of < on the real line as  

       A < B  iff  Ra  < Lb  

and the another one as an extension of the 

concept of set inclusion, i.e., 

      A   B iff La  ≥ Lb  and Ra  ≤ Rb   
 

These order relations cannot explain ranking 

between two overlapping intervals. The 

extension    of   the    set   inclusion here only  

describes the condition that the interval A is 

nested in B; but it cannot order A and B in 

terms of value. Ishibuchi and Tanaka  

approached the problem of ranking two 

intervals numbers more prominently. 
 

In their approach, in a maximization problem 

if  intervals A and B are two, say, profit 

intervals, then maximum of A and B can be 

defined by an order relation LR
 between A 

and B as follows: 

       A LR
B  iff  La  ≤ Lb  and Ra  ≤ Rb ; 

       A LR
 B  iff  A LR

 B and A ≠ B. 

Ishibuchi and Tanaka  suggested another order 

relation ≤mw where LR
 cannot be applied, as 

follows: 

  Amw
B iff  m(A ≤ m(B) and w(A) ≥ w(B); 

       A mw
B  iff  Amw

B and  A ≠ B. 

The order relations LR
 and mw

 are 

antisymmetric, refexive and transitive and 

hence, define partial ordering between 

intervals. But they did not compare the pairs of 

intervals for which both LR
 and mw

 fail. 

As we conceive, here lies a drawback in their 

approach. They concentrated more on 

preference ordering, particularly on strict 

preference ordering, not on the ranking in 

terms of value. While considering preference 

ordering between two inexactness represented 

by two intervals, consideration of weak 

preference ordering between two intervals is 

more significant from a decision making point 

of view, particularly when a decision is to be 

made in an inexact environment. From this 

point of view their approach is incomplete and 

hence looses its significance. 
 

 

PROBLEM FORMULATION 

Consider a network with m nodes and n  arcs 

that  the connected arcs in a transportation 

network are represented as interval numbers. 

We associate with each arc ( i, j) , a lower 

bound on flow of [ l L
ij , l U

ij ]=[0,0]  and an upper 

bound on  flow [u L
ij , u U

ij ]. We shall assume 

throughout the development that [u L
ij , u U

ij ] 's 

are finite integers interval. In such a network, 

we wish to find the maximum amount of flow 

from node 1 to node m . Let  [f L , f U ] 

represent the amount of flow in the network 

from node 1 to node m . Then the interval 

maximum flow problem may be stated as 

follows: 
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        Maximize                         [f L , f U ] 

          subject to 

                               [f L , f U ]           i=1 

             

m

k

U
ki

L
ki

m

j

U
ij

L
ij xxxx

11
],[],[     [0,0]               i≠1,m                                                                                          

                                                  [f
U

, f
L

]         i=m                                                                                              (1) 

 

     

                       [x L
ij ,x U

ij ]  [u L
ij , u U

ij ]  i,j=1,2,…,m 

                       [x L
ij , x U

ij ]  [0,0] i,j=1,2,…,m. 

 

If we use Hukuhara difference for (1), we can 

write (eq. 1) like as follow: 

 

 

         Maximize                    [f L , f U ] 

         subject to 

                                                      f
L

    i=1                                                                                                             (2) 

             

m

k

L
ki

m

j

L
ij xx

11
      0               i≠1,m  

                                                      f
U

            i=m 

 

                                                       f
U

           i=1 

            

m

k

U

ki

m

j

U

ij xx
11

     0              i≠1,m  

                                                       f
L

        i=m 

  

               0   x L
ij   u L

ij                       i,j=1,2,…,m 

               0   x U
ij   u U

ij                      i,j=1,2,…,m. 

If  A 1 be matrix of coefficients in under m 

equality constraints : 

 

 

                                                      f
L

             i=1                                        

             

m

k

L
ki

m

j

L
ij xx

11
      0               i≠1,m  

                                                      f
U

            i=m, 

 

also A 2  be matrix of coefficients in under m 

equality constraints: 
 

                                                      f
U

               i=1 

             

m

k

U
ki

m

j

U
ij xx

11
      0                 i≠1,m  

                                                      f
L

          i=m, 

and  A 3 , A 4  be matrixes of coefficients in under 

constraints respectively: 

 

 

              0   x L
ij   u L

ij                       i,j=1,2,…,m 

              0   x U
ij   u U

ij                      i,j=1,2,…,m. 
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   So (eq.2) can be converted as follows: 
 

               Maximize                 z(x)= [f L , f U ] 

                   subject to 

                           A 1 x = 0                                                                                                (3) 

                           A 2 x = 0 

                           A 3 x  b 1  

                           A 4 x  b 2  

                                 x  0 

 

   where  

                x = [f
L

, f
U

, x
L
12 , x

U
12 ,…, x

L
mm 1 , x

U
mm 1 ],                             xR

2)1( mm
 

                b 1  = [ u
L
12 , u

L
13 ,…, u

L
mm 1 ],                                                 b 1 R

)1( mm  

                b 2 = [ u
U
12 , u

U
13 ,…, u

U
mm 1 ],                                                 b 2 R

)1( mm
. 

 
   

Theorem  3.1. If  x* be an optimal solution of 

the following problem then x* is an optimal 

solution for the problem (eq.3). 

 

 

 

            Maximize                 f L
+f

U
 

           subject to 

                                                          f
L

             i=1                                                                                              (4) 

                 

m

k

L
ki

m

j

L
ij xx

11
      0               i≠1,m  

                                                          f
U

            i=m 

 

                                                          f
U

              i=1 

                 

m

k

U
ki

m

j

U
ij xx

11
     0                 i≠1,m  

                                                          f
L

          i=m 

  

                      0   x L
ij   u L

ij                       i,j=1,2,…,m 

                      0   x U
ij   u U

ij                      i,j=1,2,…,m.  

 

     

Proof. Firest problem (4) can be converted as 

follows: 

 

 

                        Maximize               f L
+f

U
 

                        subject to 

                                       A 1 x = 0                                                (5) 

                                       A 2 x = 0 

                                       A 3 x  b 1  

                                       A 4 x  b 2  

                                               x  0. 

We are going to prove this theorem by 

contradiction. Suppose that x* is not a optimal 

solution of problem (eq.3). Then, according to 

Definition there exists an x 
  X such that  f(x  ) 

LR
  f(x*), i.e. 
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           f L < f  L                       f L  f  L                      f L  < f  L   

      or    or                                                                                                      

(6) 

            f U   f  U                   f U  < f  U                   f U  < f  U . 

  

Therefore, from above, we see that  f L + f U < f 

L + f  U and this contradict.   □     
 

Theorem  3.2. The optimal solution of  (eq.4) is 

equivalent to optimal solutions of the following 

problems. 

 

 

 

     

              Maximize                   f L  

               subject to 

                                                          f
L

             i=1                                                                                                     (7) 

                 

m

k

L
ki

m

j

L
ij xx

11
       0               i≠1,m  

                                                          f
U

            i=m 

  

                   0   x L
ij   u L

ij                 i,j=1,2,…,m. 

And 

              Maximize                    f U
 

              subject to 

                                                          f
U

              i=1                                                                                                    (8) 

                 

m

k

U
ki

m

j

U
ij xx

11
      0                 i≠1,m  

                                                          f
L

          i=m 

                0   x U
ij   u U

ij                      i,j=1,2,…,m. 

 

Proof. Consider 

 C = [1,1,0,…,0],  C     R
2)1( mm

 

 C 1 = [1,0,…,0], C 1 R
2)1( mm

 

                                   C 2 = [0,1,0,…,0],                           C 2 R
2)1( mm

  
 

Therefore (eq.5), (eq.7), (eq.8) can be converted 

respectively as follow: 

 

 

               Maximize           Cx= f
L

+f
U

 

                 subject to 

                           A 1 x = 0                                                                                                      (9) 

                           A 2 x = 0 

                           A 3 x  b 1  

                           A 4 x  b 2  

                                x  0                    

                 

               Maximize             C 1 x  =f
L

                                                 (10) 

                 subject to 

                           A 1 x = 0 

                           A 3 x  b 1  

                                x  0        
 

            Maximize               C 2 x=f
U

                                                                                                                    (11) 

                 subject to  

                           A 2 x = 0 
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                           A 4 x  b 2  

                                x  0                           

Note that  A 1 , A 2 , A 3  , A 4  and  x , b 1 , b 2 be 

difined before. 
 

Suppose that  x* is optimal solution for problem 

(eq.9), thus we can write Karush-Kuhn-Tucker 

optimality conditions for it. For to obtain 

complementary slackness condition we have: 

 

 

 

 

 

 

 

                                                            w 5 (-A 3  x*+ b 1 )= 0                            v x*= 0                   

                                                            w 6 (-A 4  x* + b 2 )= 0      

 

Note that w 1  , w 2 , w 3 , w 4 , w 5 , w 6 and v are 

Lagrangian multipliers for A 1 x   0 , -  A 1 x   

0 , A 2 x   0 , -A 2 x   0 ,      - A 3 x  -b 1  , -A 4 x 

 -b 2 , x  0, respectively. 

             

Also for feasible duality condition we have 

 

 

 

 

 

 

                                                                                                                        A 1   

                                                                                                                          -A 1    

                                                                      (w 1  , w 2 , w 3 , w 4 , w 5 , w 6 )       A 2    + v =  -C              

                                                                                                                          -A 2               

                                                                                                            -A 3               

Let  w 1  - w 2  = W 1   and   w 3 - w 4 = W 2  thus we have  

                                                   W 1 A 1 + W 2 A 2 + w 5 A 3 + w 6 A 4  -v = C    

 

The first contition of  K.K.T conditions is also 

true. Therefore K.K.T conditions for x* is as 

follow: 

 

 (i)  A 1 x* = 0, A 2 x* = 0, A 3 x*  b 1 , A 4 x*  b 2                                                                     x* 0    

 (ii)     W 1 A 1 + W 2 A 2 + w 5 A 3 + w 6 A 4  -v = C                               W 1 ,W 2  are free, w 5 , w 6 ,v 0       

 (iii)  W 1 (A 1 x*– 0)+ W 2 (A 2  x*– 0)+ w 5 (-A 3  x*+ b 1 )+  w 6 (-A 4  x* + b 2 )= 0              v x*= 0.           

                            

We should prove that K.K.T conditions for 

(eq.10) and (eq.11)  is equivalent to K.K.T 

conditions above. 

We can write K.K.T conditions for (eq.10 ) and 

(eq.11)  like above. So K.K.T conditions for 

problem (eq.10) is as follow:  

 

 

 

 

 (i)  A 1 x*   0,  A 3  x*  b 1                                      x* 0     

 (ii) Y 1  A 1 + y 5 A 3 - v = C 1               Y 1  is free ,y 5 ,v 0 

 (iii) Y 1  (A 1 x*– 0) + y 5  (-A 3  x*+ b 1 )=0           v x*= 0. 

 

Similarrly  K.K.T conditions for  problem 

(eq.11) is as follow: 

 

 (i)  A 2 x*   0,  A 4 x*  b 2                                      x*  0     

 (ii) Y 2  A 2 + y 6 A 4 - v = C 2              Y 2  is free, y 6 ,v 0 

 (iii) Y 2  (A 2 x*– 0)+y 6 (-A 4  x* + b 2 )= 0         v x*= 0. 

If in K.K.T conditions for two problems (eq.10)  
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and (eq.11) we consider that  W 1 = Y 1 , W 2 = Y 2

, w 5 = y 5 , w 6 = y 6 and  combination of  C 1 , C 2

be C thus from  combination of  K.K.T 

conditions  two problems we have: 

 

 

 

 (i)  A 1 x*   0, A 2 x*   0, A 3 x*  b 1 , A 4 x*  b 1                                                                    x*  0     

 (ii) Y 1  A 1  + Y 2  A 2 + y 5 A 3 + y 6 A 4 - v = C                                     Y 1 ,Y 2  are free , y 5 , y 6  v  0 

 (iii) Y 1  (A 1 x*– 0) + Y 2  (A 2 x*– 0) + y 5  (-A 3  x*+ b 1 )+y 6 (-A 4  x* + b 2 )= 0              v x*= 0. 

 

We see that K.K.T conditions for problem (eq.9) 

and  problems (eq.10) and (eq.11) is equality.   □  
 

Result 3.1.   If  x* be optimal solution of the 

problems (eq.7) and (eq.8) then x* is an optimal 

solution of problem (eq.1). 
 

 

 

 

THE NEURAL NETWORK MODEL 

In this section, we use the penalty method to 

solve the linear programming problem (eq.10) 

and (eq.11) and then construct a neural network 

model. The first we write neural network model 

for (eq.10) namely for lower bound. So, if we 

apply penalty method to solve (eq.10), following 

unconstrained problem can be obtained:  

   Maximize        P 1 (x) = c 1 x-
2


  

2

1

2

1
)()(  

 
m

j
j

n

i
i xhxg                                                       (12) 

wherever μ  is a positive number and  gi(x) = a i
3

x − b 1 , hj(x) = a j
1 x and gi+(x) = max{0, gi( 

x)}(i=1,2,…,n and j=1,2,…,m) 

n  is number inequality constraints, m  is number 

equality constraints, a
i
 is i

 
’th row of matrix A2 

and a
j
 is j ’th row of matrix A1. So, the necessary 

condition for optimality of the unconstrained 

problem (12) is, i.e.:           

                                                                                                

                 c 1 - 0
)(

)(
)(

)(

1 1




















































 
 




n

i

m

j

j
j

i
i

x

xh
xh

x

xg
xg           x 0, 

where 
       

               

,
))((

,...,
))((

,
))(())((

,
))((

,...,
))((

,
))(())((

1

)1(

3

)1(

j

U
mm

j

U

j

L

jj

i

U
mm

i
U

i
L

ii

a
x

txh

f

txh

f

txh

x

txh

a
x

txg

f

txg

f

txg

x

txg




































































                  

The neural network model for the lower bound 

maximum flow problem (eq.10) can be 

described by the following nonlinear dynamical 

system: 

 

 

 

 

           ,))(()()(
1

11

1

1331 







 




m

j

jj
n

i

iiti xaabxaac
dt

dx
                x 0,                                             (13) 

Also if we apply penalty method to solve 

(eq.11), following unconstrained problem can be 

obtained:  

 

 

            Maximize        P 2 (x) = c 2 x-
2


  

2

1

2

1
)()(  

 
m

j j

n

i i xtxs                                                        (14) 

 

wherever μ  is a positive number and  si(x) = a
i

4

x − b 2 , tj(x) = a
j

2 x and si+(x) = max{0, si( 

x)}(i=1,2,…,n and j=1,2,…,m) 

 

n  is number inequality constraints, m  is number 

equality constraints, a
i
 is i

 
’th row of matrix A4 

and a
j
 is j ’th row of matrix A2.  

The neural network model for the upper bound 

maximum flow problem (eq.11) can be 

0
)(






x

xP
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0
)(






x

xP

described by the following nonlinear dynamical 

system: 

 

 

           ,))(()()(
1

22

1

2442 







 




m

j

jj
n

i

iiti xaabxaac
dt

dx
                x 0                                              (15) 

 

Stability analysis of the neural network model 

In this part, the stability of the equilibrium state 

and convergence of the neural network (eq.13) 

to optimal solution are discussed. For nonlinear 

system, the most common method to show that a 

system is asymptotically stable is to use the 

Lyapunov function method, see Sontag (5), 

Forti, et al. (6). Assume that v(x)=-P 1 (x) and 

based on Theorem 4.1.1, v(x) is as Lyapunov 

function and dynamical system is asymptotically 

stable at equilibrium state. So with respect to 

Theorem (4.1.2), obtain where optimal solution 

of maximum flow problem is equal to 

equilibrium state of (13). 

 

Theorem 4. 1. 1: Under the penalty method, 

v(x)  of (eq.12)  is a Lyapunov function of 

system (eq.13). 

Proof: 
v(x)  is a differentiable and positive definite on 

some neighborhood of equilibrium state, 

because v(0) = 0  and   μ  is an arbitrary positive 

number so v(x) > 0,  for x ≠ 0 . It is sufficient for 

x ≠ 0 show that  0
)))(((






t

txv  

For this purpose with taking the derivative of v( 

x) with respect to time t, for x ≠ 0  we have: 

 

         

    

                   

Thus v( x)  is a Lyapunov function. 

Now in Theorem 4.1.2, we prove that the 

optimal solution of (eq.12) is the equilibrium 

state of (eq.13). 
 

Theorem 4. 1. 2:  If for any μ  (12) has an 

optimal solution, and if for system (eq.13) we 

can find a state variable x(t), so that the neural 

network is asymptotically stable at   x
*
, then the 

optimal solution to (eq.12) would be the 

equilibrium state of (eq.13). 
 

Proof: 

The necessary condition for optimality of 

(eq.13) is   , i.e.: 

                                                                                                 

              

This is equivalent to 
  

                  

           

With regard to definition of stability in the 

equilibrium point we have    0


dt

dx
. 

Using Theorem 4. 1. 1, system (eq.13) is 

asymptotically stable, thus equilibrium state 

x
*
satisfies (eq.12) and this lead to this fact that 

optimal solution of (eq.12) can be the same 

equilibrium state of (eq.13).  
 

Numerical Example 

Example 5. 1. Consider the maximum flow 

problem for following network 

 
                                    Figure 1. 
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First we write interval maximum flow problem 

like two subproblem as follows: 

 

 

                Maximize           f L  

               subject to 

x
L
12 + x

L
13 - x

L
21 - x

L
31  = f

L
 

x
L
21 + x

L
23 + x

L
24 - x

L
21 - x

L
32  - x

L
42 = 0 

x
L
31+ x

L
32 + x

L
34 - x

L
13 - x

L
23  - x

L
43 = 0 

x
L
42 + x

L
43 - x

L
24 - x

L
34  = -f

L
 

x
L
12 2  

x
L
13 1  

x
L
23 1  

x
L
24 1

x
L
32 2  

x
L
34 2  

f
L

,x
L
12 , x

L
13 , x

L
23 , x

L
24 , x

L
34 ,x

L
21 ,x

L
31  ,x

L
32 ,x

L
42 ,x

L
43 0 , 

And 

               Maximize           f U
 

               subject to 

x U
12 + x U

13 - x U
21 - xU

31  = f U  

x U
21 + x U

23 + x U
24 - x U

21 - xU
32  - xU

42 = 0 

x U
31+ xU

32 + x U
34 - xU

13 - x U
23 - xU

43 = 0 

x U
42 + xU

43 - x U
24 - x U

34  = - f U  

x U
12 2  

x U
13 1                                       

x U
23 1  

x U
24 1

x U
32 2  

x U
34 2  

  f U , x U
12 , x U

13 , x U
23 , x U

24 , x U
34 , x U

21 , x U
31  , xU

32 , x U
42 , xU

43 0   

where x L
ij 's and x U

ij 's are lower and upper variables 

respectively. Optimal solution which obtained by 

simplex method  for first subproblem is: 

 

 

f L *
=3,   x L

12
*
=2,      x L

13
*
=1,     x L

23
*
=1,      x L

24
*
=1,       x L

34
*
=2,      x L

32
*
=0. 

And for second subproblem is: 

   f U *
=15,    xU

12
*
=9,      x U

13
*
=6,     x U

23
*
=3,       x U

24
*
=6,      x U

34
*
=9,      xU

32
*
=0. 

Now we solve two subproblem above with neural 

network, for the first subproblem, 

let x 1 = x L
12 ,  x 2 = x L

13 ,  x 3 = x L
21 ,  x 4 = x L

23 ,  x 5 = x L
24 ,  x 6 = x L

31 ,  x 7 = x L
32 ,  x 8 = x L

34 ,  x 9 = x L
42 ,  x 10 =x L

43  so we 

have 

                Maximize           f L
 

                 subjet to 

h 1 (x)= x 1 + x 2 - x 3 - x 6  - f
L

= 0 

h 2  (x)=  x 3 + x 4 + x 5 - x 1 - x 7  - x 9 = 0 

h 3  (x)=  x 6 + x 7 + x 8 - x 2 - x 4  - x 10 = 0  
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h 4  (x)=  x 9 + x 10
L
43 - x 5 - x 8  -f L = 0 

g 1  (x)= x 1 -2  0 

g 2  (x)=  x 2 -1   0 

g 3  (x)= x 4 -1   0 

g 4  (x)= x 5 -1   0                                    

g 5  (x)= x 7 -2   0 

g 6  (x)= x 8 -2   0 

f
L

, x 1 , x 2 , x 4 , x 5 , x 8 , x 3 , x 6  , x 7 , x 9 , x 10 0 . 

The neural network model for solving the lower 

bound of maximum flow problem is the following 

nonlinear dynamical system: 

 

 

                












 







4

1

11

6

1

1331 ))(()()(
j

jj

i

iiti xaabxaac
dt

dx
 ,               x 0.    

This is equivalent to: 

                 













 



4

1

11

6

1

1331 )()(

j

t

i

it
xAAbxAAc

dt

dx
  

whenever b 1 =[2, 1, 1, 1, 2, 2], c 1 =[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],  x=( f
L

, x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10  ) 

and  
dt

dx
=(

dt

df
, 

dt

dx1 , 
dt

dx2 , 
dt

dx3 , 
dt

dx4 , 
dt

dx5 , 
dt

dx6 , 
dt

dx7 , 
dt

dx8 , 
dt

dx9 , 
dt

dx10 ) 

We also have 

                              A 1 =





















 1   1   1-   0    0   1-   0   0   0    0   1

 1-  0    1   1    1    0   1-  0   1-   0   0

0   1-   0   1-   0    1   1   1   0    1-  0

0    0   0    0   1-   0   0   1-  1   1   1-

, A 2 =



























0   0   1   0   0   0   0   0   0   0   0

0   0   0   1   0   0   0   0   0   0   0

 0   0   0   0   0   1   0   0   0   0   0

 0   0   0   0   0   0   1   0   0   0   0

0   0   0   0   0   0   0   0   1   0   0

0   0   0   0   0   0   0   0   0   1   0

. 

By selecting  n=5000,  = 100,  dt=0.001 and  x 0

=(1, 1, 1, 1, 1, 1) and using Euler method for solving 

above neural network model, the optimal solution is 

obtained as follows: 

 

 

f
L

=
*

3.008, x
L
12

*
=2.000, x

L
13

*
=1.005, x

L

21

*
=0, x

L
23

*
=1.003, x

L
24

*
=1.005, 

x
L

31

*
= 0   x

L
32

*
=0.009   x

L
34

*
=2.000  x

L

42 =
*

0   x
L

43

*
=0. 

Now for second subproblem let 

x 1 = x
U
12 ,  x 2 = x

U
13 ,  x 3 = x

U
21 ,  x 4 = x

U
23 ,  x 5 = x

U
24 ,  x 6 = x

U
31 ,  x 7 = x

U
32 ,  x 8 = x

U
34 ,  x 9 = x

U
42 ,  x 10 =x

U
43 , so we have 

 

                Maximize          f U
 

                 subjet to 

h 1 (x)= x 1 + x 2 - x 3 - x 6  - f
U

= 0 

h 2  (x)=  x 3 + x 4 + x 5 - x 1 - x 7  - x 9 = 0 

h 3  (x)=  x 6 + x 7 + x 8 - x 2 - x 4  - x 10 = 0  

h 4  (x)=  x 9 + x 10
L
43 - x 5 - x 8  - f

U
= 0 

g 1  (x)= x 1 -12  0 

g 2  (x)=  x 2 -6   0                                     

g 3  (x)= x 4 -3   0                                     

g 4  (x)= x 5 -6   0           
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g 5  (x)= x 7 -6   0  

g 6  (x)= x 8 -9   0                                     

f U , x 1 , x 2 , x 4 , x 5 , x 8 , x 3 , x 6  , x 7 , x 9 , x 10 0  

 

The neural network model for solving the 

lower bound of maximum flow problem is the 

following nonlinear dynamical system: 

 

 

 

                ,))(()()(
4

1

22

6

1

2442
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



 j

jj

i

iiti xaabxaac
dt

dx
                x 0.    

This is equivalent to: 
 

                













 



4

1

22

6

1

2442 )()(

j

t

i

it
xAAbxAAc

dt

dx
  

Whenever b 1 =(12, 6, 3, 6, 6, 9), c 1 =(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), x=( f
U

, x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , 

x 8 , x 9 , x 10  ) 

 

 and 
dt

dx
=(

dt

df

dt

dx1

dt

dx2

dt

dx3

dt

dx4

dt

dx5

dt

dx6

dt

dx7

dt

dx8

dt

dx9

dt

dx10 ) 

We also have 

                                     A 2 =





















 1   1   1-   0    0   1-   0   0   0    0   1

 1-  0    1   1    1    0   1-  0   1-   0   0

0   1-   0   1-   0    1   1   1   0    1-  0

0    0   0    0   1-   0   0   1-  1   1   1-

, A 4 =



























0   0   1   0   0   0   0   0   0   0   0

0   0   0   1   0   0   0   0   0   0   0

 0   0   0   0   0   1   0   0   0   0   0

 0   0   0   0   0   0   1   0   0   0   0

0   0   0   0   0   0   0   0   1   0   0

0   0   0   0   0   0   0   0   0   1   0

. 

By selecting  n=27000,  = 100,  dt=0.001 

and  x 1 =(3, 3, 3, 3, 3, 3) and using Euler 

method for solving above neural network 

model, the optimal solution is obtained as 

follows: 

 

 

 

 

f
U *

=15.008, x
U
12

*
=9.000, x

U
13

*
=6.005, x

U

21

*
=0,  x

U
23

*
=3.002, x

U
24

*
=6.005, 

x
U

31

*
=0, x

U

32

*
=0, x

U
34

*
=9.000, x

U

42

*
=0, x

U

43

*
=0. 

CONCLUSION 

This paper presents one neural network model 

to solve interval maximum flow problem. To 

obtain this model, the first original problem is 

transformed into an unconstrained 

optimization problem, then constructed a  

nonlinear dynamic system. The our nonlinear 

neural network is able to generated optimal 

solution to the interval maximum flow 

problem with a much faster convergence. 
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