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A mathematical model of plasma renin activity after nifedipine treatment is developed. The system 

identification of the process is done applying the cyclic coordinate descent as optimization procedure. 

The model allows predicting the effects of different drug doses and permits the researcher to examine 

the behaviour of the system under all conceivable conditions. 
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INTRODUCTION 

A mathematical model is a collection of 

mathematical relationships which describe 

a process. Models are by necessity 

abstractions of the real situations they 

represent. The power of modeling lies in 

this abstraction, since a single family of 

models may present a vast majority of real 

systems. Mathematical modeling finds out 

the mathematical relations that characte-

rize the internal structure of the delimited 

system and formalizes the interdependen-

cies between the input and output variab-

les. A model is considered here as a tool 

for systems representation in an abstract 

sense, allowing the simulation and the 

prediction of the future behaviour of the 

system. 

The purpose of mathematical mode-

ling is to translate the observed pheno-

mena into a set of equations, to determine 

the parameter values of that model, 

reflecting in a particular experimental set-

up, and then through simulation to predict 

the behaviour, confirming or disputing 

previous knowledge or hypotheses. Some 

of advantages of modeling are: 

• trials of tested systems can be accom-

plished in much shorter time period;  

• system performance can be observed 

under all possible conditions; 

• decisions concerning future systems 

presently in conceptual stage can be 

examined; 

• the investigated phenomenon can be 

simplified, without affecting its na-

ture, in order to make its qualitative 

analysis simpler, or possible at all; 

• modeling can be used in education to 

describe, interpret, predict or explain 

phenomena;  

• computer modeling and simulation 

are often the only feasible or safe 

techniques to analyze and evaluate a 

system. 
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• simulation results can be obtained at 

lower cost than in real experimen-

tation; 

These general advantages give the 

opportunity to speed up and make less 

expensive experiments in biology and me-

dicine, aimed at formulation of new drugs 

in the pre-clinical phase and to decrease 

the number of experimental animals. Also, 

using simulation, the results and conclu-

sions could be associated to application of  

the drugs in people.  

In our previous experiments (Ilieva et 

al., 1995; Tolekova, 2003) we investiga-

ted the change in the regulatory kinetics of 

plasma renin activity (PRA) after blocking 

of the transmembrane calcium flow through 

L-type calcium channels. Their dynamic 

characteristics were investigated employing 

system and functional analysis (Тolekova, 

1998; Tolekova et al., 1998; Tolekova et 

al., 2002; Yankov et al., 1998a; 1998b). A 

chronological sequel of these experiments 

is the creation of a mathematical model of 

the change in PRA as a function of the 

applied doses of the drug. The first 

formulated model is for application of ni-

cardipine (Tolekova et al., 2006). 

The aim of the present work was to 

create a mathematical model of the dyna-

mics of renin (a key enzyme in the regu-

lation of the arterial blood pressure) after 

the application of different doses nifedi-

pine. The model will be a basis of investi-

gating the enzyme activity of renin from 

the point of view of the modern system 

theory.  

MATERIALS AND METHODS 

Data acquisition 

The experiments were carried out on 208 

male  Wistar rats. PRA was assessed ra-

dioimmunologically (DiaSorin-Biomedica 

Ltd.) after oral  application of nifedipine 

at doses of 10 (n=35), 20 (n=69), 40 

(n=69), or 60 (n=35) mg/kg body weight. 

The values of experimental groups were 

compared with these of a control group 

(n=18). PRA was sampled at the intervals 

showed in Table 1. The animals were 

housed in polycarbonate cages in 

temperature (18–23
o
C) and humidity (40–

70%) controlled conditions and 12 h 

light/dark cycle, with free access to tap 

water and standard laboratory chow. They 

received humane care compliant with the 

Institution's guidelines for humane care of 

experimental animals of the Trakia Uni-

versity and with the national and Europe-

an regulatory rules (Decree for protection 

and humane care of experimental animals 

25/10.06.2005, Law on Veterinary  Me-

dical Activities G87/11.01.2005, Art 2 

(152 and 153) and Council Directive 

86/609/ EEC of 24 November 1986 on the 

approximation of laws, regulations and 

administrative provisions of the Member 

States regarding the protection of animals 

used for experimental and other scientific 

purposes). 

The application of treatments started at 

the same time of  the day (at 8 AM). Until 

the beginning of the experiment the 

animals remained at the specified condi-

tions in the plastic cages with adaptation 

purposes. The sampling of blood was  

performed under general anaesthesia with 

thiopental sodium at 30 mg/kg, applied 

intraperitoneally. The animals were immo-

bilized on operation tables and a laparo-

tomy was performed. The arterial and ve-

nous kidney vessels were ligated on both 

sides after which the chest  was opened 

with a sagittal cut. The right heart camera 

was punctured with a syringe, previously 

perfused with EDTA solution. Approxi-

mately 5 mL of blood were aspired and 

used in the plasma renin analysis.  
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Design of the Mathematical Model  

In developing a mathematical model of a 

real system, two basic approaches are 

possible. The first is based on fundamen-

tal understanding of the modeled pro-

cesses that give rise to the formulation of 

the mathematical model. The other is 

based on experimental data and is 

essentially a data-driven approach (black-

box model). Experimental modeling is 

known in the literature as system 

identification. System identification is a 

general term to describe mathematical 

tools and algorithms that build dynamical 

models from measured data. A dynamical 

model in this context is a mathematical 

description of the dynamic behaviour of a 

system or process. The identification 

experiment is performed by applying a 

specific input signal U(t), to the system 

measuring the observed output y(t) over a 

time interval and trying to determine a 

mathematical relation between them 

without going into the details of what is 

actually happening inside the system (Fig. 

1). The model is determined from measu-

red signals using some adequate identifi-

cation methods. For nonlinear models 

very few results have been obtained and 

there is no standard algorithm for testing a 

global identifiability. Various approaches 

have been proposed, e.g., power series 

(Pohjanpalo, 1978), differential algebra 

(Carson et al., 1983), similarity transfor-

mation methods (Vajda et al., 1989), 

stochastic approximation (Petrov, 2005), 

cyclic coordinate descent (Yankov, 2006). 

System identification of PRA 

For modeling of the PRA production 

process, the identification was planned 

observing the following sequence: 

• Input signal U(t). A short oral appli-

cation of nifedipine is considered as 

Dirac function. The signal amplitude 

is correlated to the nifedipine dose. 

• Identification time tp. The maximum 

duration time was fixed to 11 hours. 

This was expected to be sufficient 

and practical. After this time the 

system response reaches the steady 

state level and the system state va-

riables are time independent.  

• Sampling time. The first two samples 

were taken at post treatment min 30 

and hour 1 and the subsequent ones 

were taken at every 2 h (Table 1).  

• Output response y(t). During the 

experiment, a discrete-time output  

Ф(t) ⊂ y(t) is observed: 

Ф(t) = (ф1, ф2,... фN)
Т
,   

where: N – number of samples. 

The measured data corresponding to 

Ф(t) are presented in Table 1. The vector 

Ф(t) is used during the identification pro-

cess. The data in Table 1 are statistically 

processed (Statistica 6 for Windows, Stat-

Soft Inc). Data interpolation is performed 

applying spline interpolation (Yankov, 

1998a; 1998b). 

Determination of the system model  

This stage of identification includes the 

selection of mathematical equations from 

a set of candidate system descriptions 

 

Fig. 1. System description. 
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within which a model is to be found. PRA 

follows an oscillation curve. The most ap-

propriate model is a second order ordinary 

differential equation (ODE): 
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where: ζ(d) – the damping ratio; ω(d) −  
the undamped, natural frequency of the 

system; К0(d) – the base level; Ku(d) – the 

sensibility of the process to the input 

influence (proportionality coefficient).  

The parameters above are unknown 

and they must be calculated in order to 

identify the process. All of them are dose 

(d) dependent and they form the identifi-

cation vector Q(d):  

Q(d)=Q(ζ(d), ω(d), К0(d), Ku(d)) 

Because the structure of the mathematical 

relation is a priori fixed. the parameters of 

the structure must be fitted to the data 

applying the algorithms of mathematical 

optimization (Bazaraa & Shetty, 1979).  

The mathematical model is identified 

using the KORELIA-DYNAMIX program 

(Yankov, 2006). KORELIA identifies a 

set of most frequently used algebraic, 

transcendental and ordinary differential 

equations up to third order. As identifica-

tion method, the cyclic coordinate descent 

(CCD) method is applied. The residuals 

between experimental data and identified 

model are minimized applying least squa-

re or uniform fitting. 

RESULTS  

The calculated values of the ζ(d), ω(d), 

К0(d) and Ku(d) using CCD are presented 

in Table 2. 

Natural frequency ω is dose 

independent. The coefficients  ζ(d), К0(d)  
и Ku(d) are nonlinear toward the nifedipi-

ne dose d. They must be identified as a 

function of dose quantity.  

As can be seen from the graphs on Fig. 

2, the dependence of the change of the 

parameter on the applied dose can be 

modeled with exponential decay curve: 

)()(,)exp()( 0 dQdFC
D

dd
CdF const ∈+

∆+
−=  (2) 

The unknown parameters for identifi-

cation are: 

C0 = F(0) − Cconst 

D – dose-constant.  

∆d – dose correction parameter; 

Cconst – free term 

Applying again the CCD, the calcula-

ted values for identification parameters 

are obtained (Table 3). 

Table 1.  Plasma renin activity in ng/(mL.h) after treatment with nifedipine at doses of 10, 20, 40 

and 60 mg/kg. Data are presented as means ± standard deviation 

Dose (mg/kg body weight) 
T (hours) 

10 20 40 60 

  0 7.58 ± 0.8 7.58 ± 0.8 7.58 ± 0.8 7.58 ± 0.8 

  0.5 28.3 ± 3.1 39.1 ± 10.8 39.6 ± 13.5 40.2 ± 2.9 

  1 36.3 ± 9.4 50.7 ± 10.2 51.8 ± 15.7 57.3 ± 1.7 

  3 27.5 ± 3.4 33.0 ± 4.6 55.7 ± 13.6 62.5 ± 2.6 

  5 15.4 ± 4.5 26.2 ± 4.3 35.1 ± 5.9 40.1 ± 3.9 

  7 9.8 ± 1.5 11.9 ± 3.7 20.4 ± 4.7 23.7 ± 1.5 

  9 7.58 ± 0.8 8.98 ± 2.4 10.7 ± 2.8 14.3 ± 1.7 

11 7.58 ± 0.6 7.56 ± 1.7 7.58 ± 1.6 9.5 ± 1.4 
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A 
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C 

Fig. 2. A. Damping ratio ζ(d); B. Constant 

base level K0; C. Proportionality coefficient 

Ku(d). 

 

Finally, the time and dose dependent PRA 

model is described by the system of 

equations: 
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The graphics of the experimental data 

interpolated using cubic spline and ge-

nerated models of PRA for doses of 10, 

20 ,40 and 60 mg/kg are shown on Fig. 3.  

Error estimation 

As mentioned above the measured values 

are фi. The identified values for the same 

time points are yi. For each point фi, the 

residual (absolute error) is: 

∆yi = || yi - фi ||  , i=1..N 

And the relative error ri for each 

experimental point is: 

ri = |∆yi / фi | 
The maximum absolute error for the 

identification interval is: 

∆Ymax = max| ∆y i | 

The calculated errors for tested doses 

and the standard deviations in the cor-

Table 2.   Identification parameters for equation 1 

Nifedipine dose (mg/kg body weight) 
ODE parameters 

10 20 40 60 

ζ(d) 1.50 1.39 1.40 1.21 

ω(d) 0.60 0.60 0.60 0.60 

К0(d) 0.24 0.0 −0.73 − 2.51 

Ku(d) 61.92 40.42 26.18 15.00 
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responding experimental points are given 

in Table 4.  

Transfer function  

The transfer function of a system is the 

ratio of the Laplace transforms of its out-

put and input, assuming zero initial 

conditions (Lijung, 1999; Wolkenhauer, 

2005). A general second-order transfer 

function looks as follows: 

22

2

2
)(

ωζω
ω
++

=
ss

K
sG U                     (4) 

Table 3.    Identification parameters for equation 2 

ODE parameters Chart C0 D ∆d Cconst 

ζ(d) Fig. 2a 15.11    1000 999    − 4 

К0(d) Fig. 2b −0.25 23.81   0   0.602 

Ku(d) Fig. 2c 75.86 22.22   0 11.64 

 

  A 

  B 

Fig. 3. Experimental data and simulation curves of PRA: A. after nifedipine treatment at doses of 10 

and 40 mg/kg b.w; B. after nifedipine treatment at doses of 20 and 60 mg/kg b.w. 
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After substituting the corresponding 

coefficients from system (3) the dose-

dependent transfer function is obtained: 

36.0)4)
1000

999
exp(11.15(2.1

1796.4)
22.22

exp(27.3096

),(
2 +−

+
−+

+−
=

s
d

s

d

dsG
                                    (5) 

State-space representation 

State space is an alternative representation 

of a system that is defined by differential 

equations. Specifically it is a collection of 

linear first order differential equations. 

Let the set of time, dose variables x1(t,d), 

x2(t,d), xn(t,d), being chosen to describe 

the dynamic behaviour of a system. These 

variables are state variables of that system 

and they satisfy the following conditions: 

• at any initial time t = t0, the state 

variables x1(0,d), x2(0,d),… xn(0,d) 

define the initial states of the system 

at the selected initial time. 

• once the inputs of the considered 

system for t ≥ t0 and the initial states 

defined above are specified, the state 

variables should completely define 

the future time behaviour of that sys-

tem. 

Therefore, the state variables of a 

system are defined as a minimal set of 

variables:  

X(t,d) = (x1(t,d), x2(t,d), … xn(t,d))
T
 

such that knowledge of these variables at 

any initial time t0, plus information on the 

dose input excitation subsequently 

applied, are sufficient to determine the 

state of the system at any time t > t0 ,  for 

any dose d. 

The nifedipine model is described by 

second order ODE, therefore two vari-

ables x1(t,d) and x2(t,d), are necessary.      

Let substitute: 
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And the state space form is: 
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For most practical purposes, analysis 

of the system is conducted by local 

linearization of the nonlinear system near 

a particular operating point XO(xO1, xO2) in 

the state space. Thus the linearization 

allows using well established tools from 

linear systems theory.  

Table 4. Maximum absolute and relative error for different doses nifedipine 

Dose 
T 

(hour) 

PRA 

experiment 

PRA 

model 

Absolute error 

∆Ymax 

Standard 

deviation 

Relative error 

ri 

10 3 27.5 34.012 6.512 3.4 0.2412 

20    0.5 39.1 31.890 7.210 10.8 0.1844 

40 1 51.8 57.478 5.678 15.7 0.1096 

60 1 57.3 61.614 4.314 1.7 0.0752 
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The state space model (6) can be 

linearized about an operating point (xO1, 

xO2) using the Jacobi matrix J(t,d): 

)),().(,(
),(

0XdtXdtJ
dt

dtdX
−=  

For the nifedipine model the state-

space mathematical model can be 

represented in matrix form: 
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CONCLUSIONS 

Mathematical modeling has recently beco-

me a powerful tool for better under-

standing and simulating of processes. It 

can be used to describe, interpret, predict 

or explain. Simulation results can be 

obtained at lower cost than real experi-

mentation reducing the time and number 

of animals during the test. 

Using a specialized software the 

mathematical model of PRA as a function 

of nifedipine dose is obtained. The model 

shows, that the natural frequency of PRA 

system is dose independent. The parame-

ters ζ(d), К0(d) and Ku(d), have non-linear 

exponential dependence on the nifedipine 

dose. The model is filled out with dose-

dependent transfer function in Laplace 

domain and state space linearized model 

in matrix form. The proposed PRA model 

provides a means to study the role of 

various drugs and doses for regulation of 

renin-angiotensin system and human car-

diovascular status. 

In future the efforts will be oriented to 

formulation of PRA models after treat-

ment with different drugs (Tolekova et al., 

1995; 1996; Ilieva et al., 1994; 1995), fre-

quence and stability analysis of obtained 

models and comparison of received mo-

dels of studied drugs from the point of 

view of system theory. 
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Summary 

Tolekova, A. &  K. Yankov, 2008. Mathematical model of plasma renin activity after 

nifedipine treatment. Bulg. J. Vet. Med., 11, No 1, 21−29.  
 

A mathematical model of plasma renin activity after nifedipine treatment is developed. The system 

identification of the process is done applying the cyclic coordinate descent as optimization procedure. 

The model allows predicting the effects of different drug doses and permits the researcher to examine 

the behaviour of the system under all conceivable conditions. 

Key words: mathematical model, plasma renin activity, renin angiotensin system, system 

identification 

INTRODUCTION 

A mathematical model is a collection of 

mathematical relationships which describe 

a process. Models are by necessity 

abstractions of the real situations they 

represent. The power of modeling lies in 

this abstraction, since a single family of 

models may present a vast majority of real 

systems. Mathematical modeling finds out 

the mathematical relations that characte-

rize the internal structure of the delimited 

system and formalizes the interdependen-

cies between the input and output variab-

les. A model is considered here as a tool 

for systems representation in an abstract 

sense, allowing the simulation and the 

prediction of the future behaviour of the 

system. 

The purpose of mathematical mode-

ling is to translate the observed pheno-

mena into a set of equations, to determine 

the parameter values of that model, 

reflecting in a particular experimental set-

up, and then through simulation to predict 

the behaviour, confirming or disputing 

previous knowledge or hypotheses. Some 

of advantages of modeling are: 

• trials of tested systems can be accom-

plished in much shorter time period;  

• system performance can be observed 

under all possible conditions; 

• decisions concerning future systems 

presently in conceptual stage can be 

examined; 

• the investigated phenomenon can be 

simplified, without affecting its na-

ture, in order to make its qualitative 

analysis simpler, or possible at all; 

• modeling can be used in education to 

describe, interpret, predict or explain 

phenomena;  

• computer modeling and simulation 

are often the only feasible or safe 

techniques to analyze and evaluate a 

system. 
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• simulation results can be obtained at 

lower cost than in real experimen-

tation; 

These general advantages give the 

opportunity to speed up and make less 

expensive experiments in biology and me-

dicine, aimed at formulation of new drugs 

in the pre-clinical phase and to decrease 

the number of experimental animals. Also, 

using simulation, the results and conclu-

sions could be associated to application of  

the drugs in people.  

In our previous experiments (Ilieva et 

al., 1995; Tolekova, 2003) we investiga-

ted the change in the regulatory kinetics of 

plasma renin activity (PRA) after blocking 

of the transmembrane calcium flow through 

L-type calcium channels. Their dynamic 

characteristics were investigated employing 

system and functional analysis (Тolekova, 

1998; Tolekova et al., 1998; Tolekova et 

al., 2002; Yankov et al., 1998a; 1998b). A 

chronological sequel of these experiments 

is the creation of a mathematical model of 

the change in PRA as a function of the 

applied doses of the drug. The first 

formulated model is for application of ni-

cardipine (Tolekova et al., 2006). 

The aim of the present work was to 

create a mathematical model of the dyna-

mics of renin (a key enzyme in the regu-

lation of the arterial blood pressure) after 

the application of different doses nifedi-

pine. The model will be a basis of investi-

gating the enzyme activity of renin from 

the point of view of the modern system 

theory.  

MATERIALS AND METHODS 

Data acquisition 

The experiments were carried out on 208 

male  Wistar rats. PRA was assessed ra-

dioimmunologically (DiaSorin-Biomedica 

Ltd.) after oral  application of nifedipine 

at doses of 10 (n=35), 20 (n=69), 40 

(n=69), or 60 (n=35) mg/kg body weight. 

The values of experimental groups were 

compared with these of a control group 

(n=18). PRA was sampled at the intervals 

showed in Table 1. The animals were 

housed in polycarbonate cages in 

temperature (18–23
o
C) and humidity (40–

70%) controlled conditions and 12 h 

light/dark cycle, with free access to tap 

water and standard laboratory chow. They 

received humane care compliant with the 

Institution's guidelines for humane care of 

experimental animals of the Trakia Uni-

versity and with the national and Europe-

an regulatory rules (Decree for protection 

and humane care of experimental animals 

25/10.06.2005, Law on Veterinary  Me-

dical Activities G87/11.01.2005, Art 2 

(152 and 153) and Council Directive 

86/609/ EEC of 24 November 1986 on the 

approximation of laws, regulations and 

administrative provisions of the Member 

States regarding the protection of animals 

used for experimental and other scientific 

purposes). 

The application of treatments started at 

the same time of  the day (at 8 AM). Until 

the beginning of the experiment the 

animals remained at the specified condi-

tions in the plastic cages with adaptation 

purposes. The sampling of blood was  

performed under general anaesthesia with 

thiopental sodium at 30 mg/kg, applied 

intraperitoneally. The animals were immo-

bilized on operation tables and a laparo-

tomy was performed. The arterial and ve-

nous kidney vessels were ligated on both 

sides after which the chest  was opened 

with a sagittal cut. The right heart camera 

was punctured with a syringe, previously 

perfused with EDTA solution. Approxi-

mately 5 mL of blood were aspired and 

used in the plasma renin analysis.  
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Design of the Mathematical Model  

In developing a mathematical model of a 

real system, two basic approaches are 

possible. The first is based on fundamen-

tal understanding of the modeled pro-

cesses that give rise to the formulation of 

the mathematical model. The other is 

based on experimental data and is 

essentially a data-driven approach (black-

box model). Experimental modeling is 

known in the literature as system 

identification. System identification is a 

general term to describe mathematical 

tools and algorithms that build dynamical 

models from measured data. A dynamical 

model in this context is a mathematical 

description of the dynamic behaviour of a 

system or process. The identification 

experiment is performed by applying a 

specific input signal U(t), to the system 

measuring the observed output y(t) over a 

time interval and trying to determine a 

mathematical relation between them 

without going into the details of what is 

actually happening inside the system (Fig. 

1). The model is determined from measu-

red signals using some adequate identifi-

cation methods. For nonlinear models 

very few results have been obtained and 

there is no standard algorithm for testing a 

global identifiability. Various approaches 

have been proposed, e.g., power series 

(Pohjanpalo, 1978), differential algebra 

(Carson et al., 1983), similarity transfor-

mation methods (Vajda et al., 1989), 

stochastic approximation (Petrov, 2005), 

cyclic coordinate descent (Yankov, 2006). 

System identification of PRA 

For modeling of the PRA production 

process, the identification was planned 

observing the following sequence: 

• Input signal U(t). A short oral appli-

cation of nifedipine is considered as 

Dirac function. The signal amplitude 

is correlated to the nifedipine dose. 

• Identification time tp. The maximum 

duration time was fixed to 11 hours. 

This was expected to be sufficient 

and practical. After this time the 

system response reaches the steady 

state level and the system state va-

riables are time independent.  

• Sampling time. The first two samples 

were taken at post treatment min 30 

and hour 1 and the subsequent ones 

were taken at every 2 h (Table 1).  

• Output response y(t). During the 

experiment, a discrete-time output  

Ф(t) ⊂ y(t) is observed: 

Ф(t) = (ф1, ф2,... фN)
Т
,   

where: N – number of samples. 

The measured data corresponding to 

Ф(t) are presented in Table 1. The vector 

Ф(t) is used during the identification pro-

cess. The data in Table 1 are statistically 

processed (Statistica 6 for Windows, Stat-

Soft Inc). Data interpolation is performed 

applying spline interpolation (Yankov, 

1998a; 1998b). 

Determination of the system model  

This stage of identification includes the 

selection of mathematical equations from 

a set of candidate system descriptions 

 

Fig. 1. System description. 
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within which a model is to be found. PRA 

follows an oscillation curve. The most ap-

propriate model is a second order ordinary 

differential equation (ODE): 

)()(
)(

2
)(

0

2

2

2

tUKKty
dt

tdy

dt

tyd
uϖϖζϖ =+++   (1) 

where: ζ(d) – the damping ratio; ω(d) −  
the undamped, natural frequency of the 

system; К0(d) – the base level; Ku(d) – the 

sensibility of the process to the input 

influence (proportionality coefficient).  

The parameters above are unknown 

and they must be calculated in order to 

identify the process. All of them are dose 

(d) dependent and they form the identifi-

cation vector Q(d):  

Q(d)=Q(ζ(d), ω(d), К0(d), Ku(d)) 

Because the structure of the mathematical 

relation is a priori fixed. the parameters of 

the structure must be fitted to the data 

applying the algorithms of mathematical 

optimization (Bazaraa & Shetty, 1979).  

The mathematical model is identified 

using the KORELIA-DYNAMIX program 

(Yankov, 2006). KORELIA identifies a 

set of most frequently used algebraic, 

transcendental and ordinary differential 

equations up to third order. As identifica-

tion method, the cyclic coordinate descent 

(CCD) method is applied. The residuals 

between experimental data and identified 

model are minimized applying least squa-

re or uniform fitting. 

RESULTS  

The calculated values of the ζ(d), ω(d), 

К0(d) and Ku(d) using CCD are presented 

in Table 2. 

Natural frequency ω is dose 

independent. The coefficients  ζ(d), К0(d)  
и Ku(d) are nonlinear toward the nifedipi-

ne dose d. They must be identified as a 

function of dose quantity.  

As can be seen from the graphs on Fig. 

2, the dependence of the change of the 

parameter on the applied dose can be 

modeled with exponential decay curve: 

)()(,)exp()( 0 dQdFC
D

dd
CdF const ∈+

∆+
−=  (2) 

The unknown parameters for identifi-

cation are: 

C0 = F(0) − Cconst 

D – dose-constant.  

∆d – dose correction parameter; 

Cconst – free term 

Applying again the CCD, the calcula-

ted values for identification parameters 

are obtained (Table 3). 

Table 1.  Plasma renin activity in ng/(mL.h) after treatment with nifedipine at doses of 10, 20, 40 

and 60 mg/kg. Data are presented as means ± standard deviation 

Dose (mg/kg body weight) 
T (hours) 

10 20 40 60 

  0 7.58 ± 0.8 7.58 ± 0.8 7.58 ± 0.8 7.58 ± 0.8 

  0.5 28.3 ± 3.1 39.1 ± 10.8 39.6 ± 13.5 40.2 ± 2.9 

  1 36.3 ± 9.4 50.7 ± 10.2 51.8 ± 15.7 57.3 ± 1.7 

  3 27.5 ± 3.4 33.0 ± 4.6 55.7 ± 13.6 62.5 ± 2.6 

  5 15.4 ± 4.5 26.2 ± 4.3 35.1 ± 5.9 40.1 ± 3.9 

  7 9.8 ± 1.5 11.9 ± 3.7 20.4 ± 4.7 23.7 ± 1.5 

  9 7.58 ± 0.8 8.98 ± 2.4 10.7 ± 2.8 14.3 ± 1.7 

11 7.58 ± 0.6 7.56 ± 1.7 7.58 ± 1.6 9.5 ± 1.4 
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A 

B 

C 

Fig. 2. A. Damping ratio ζ(d); B. Constant 

base level K0; C. Proportionality coefficient 

Ku(d). 

 

Finally, the time and dose dependent PRA 

model is described by the system of 

equations: 

 

4)
1000

999
exp(11.15)( −

+
−=
d

dζ  

602.0)
81.23

exp()(0 +−−=
d

dK           

61.11)
22.22

exp(86.75)( +−=
d

dKu
             (3) 

)()(6.0)(K)(36.0
)(

)(2.1
),(

02

2

tUdKdty
dt

tdy
d

dt

dtyd
u=+++ ζ

initial conditions: y(0) = 7.58; 0
)0(
=

dt

dy  

The graphics of the experimental data 

interpolated using cubic spline and ge-

nerated models of PRA for doses of 10, 

20 ,40 and 60 mg/kg are shown on Fig. 3.  

Error estimation 

As mentioned above the measured values 

are фi. The identified values for the same 

time points are yi. For each point фi, the 

residual (absolute error) is: 

∆yi = || yi - фi ||  , i=1..N 

And the relative error ri for each 

experimental point is: 

ri = |∆yi / фi | 
The maximum absolute error for the 

identification interval is: 

∆Ymax = max| ∆y i | 

The calculated errors for tested doses 

and the standard deviations in the cor-

Table 2.   Identification parameters for equation 1 

Nifedipine dose (mg/kg body weight) 
ODE parameters 

10 20 40 60 

ζ(d) 1.50 1.39 1.40 1.21 

ω(d) 0.60 0.60 0.60 0.60 

К0(d) 0.24 0.0 −0.73 − 2.51 

Ku(d) 61.92 40.42 26.18 15.00 
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responding experimental points are given 

in Table 4.  

Transfer function  

The transfer function of a system is the 

ratio of the Laplace transforms of its out-

put and input, assuming zero initial 

conditions (Lijung, 1999; Wolkenhauer, 

2005). A general second-order transfer 

function looks as follows: 

22

2

2
)(

ωζω
ω
++

=
ss

K
sG U                     (4) 

Table 3.    Identification parameters for equation 2 

ODE parameters Chart C0 D ∆d Cconst 

ζ(d) Fig. 2a 15.11    1000 999    − 4 

К0(d) Fig. 2b −0.25 23.81   0   0.602 

Ku(d) Fig. 2c 75.86 22.22   0 11.64 

 

  A 

  B 

Fig. 3. Experimental data and simulation curves of PRA: A. after nifedipine treatment at doses of 10 

and 40 mg/kg b.w; B. after nifedipine treatment at doses of 20 and 60 mg/kg b.w. 
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After substituting the corresponding 

coefficients from system (3) the dose-

dependent transfer function is obtained: 

36.0)4)
1000

999
exp(11.15(2.1

1796.4)
22.22

exp(27.3096

),(
2 +−

+
−+

+−
=

s
d

s

d

dsG
                                    (5) 

State-space representation 

State space is an alternative representation 

of a system that is defined by differential 

equations. Specifically it is a collection of 

linear first order differential equations. 

Let the set of time, dose variables x1(t,d), 

x2(t,d), xn(t,d), being chosen to describe 

the dynamic behaviour of a system. These 

variables are state variables of that system 

and they satisfy the following conditions: 

• at any initial time t = t0, the state 

variables x1(0,d), x2(0,d),… xn(0,d) 

define the initial states of the system 

at the selected initial time. 

• once the inputs of the considered 

system for t ≥ t0 and the initial states 

defined above are specified, the state 

variables should completely define 

the future time behaviour of that sys-

tem. 

Therefore, the state variables of a 

system are defined as a minimal set of 

variables:  

X(t,d) = (x1(t,d), x2(t,d), … xn(t,d))
T
 

such that knowledge of these variables at 

any initial time t0, plus information on the 

dose input excitation subsequently 

applied, are sufficient to determine the 

state of the system at any time t > t0 ,  for 

any dose d. 

The nifedipine model is described by 

second order ODE, therefore two vari-

ables x1(t,d) and x2(t,d), are necessary.      

Let substitute: 

),(),(1 dtydtx =  

2

2

2
2

),(),(),(
),(

dt

dtyd

dt

dtdx

dt

dtdy
dtx =⇒=  

And the state space form is: 

)()()()().()(
),(

)()(2
),(

0

22 tUddKdKdtyd
dt

dtdy
dd

dt

dtdx
u ϖϖϖζ +−−−=            (6)

For most practical purposes, analysis 

of the system is conducted by local 

linearization of the nonlinear system near 

a particular operating point XO(xO1, xO2) in 

the state space. Thus the linearization 

allows using well established tools from 

linear systems theory.  

Table 4. Maximum absolute and relative error for different doses nifedipine 

Dose 
T 

(hour) 

PRA 

experiment 

PRA 

model 

Absolute error 

∆Ymax 

Standard 

deviation 

Relative error 

ri 

10 3 27.5 34.012 6.512 3.4 0.2412 

20    0.5 39.1 31.890 7.210 10.8 0.1844 

40 1 51.8 57.478 5.678 15.7 0.1096 

60 1 57.3 61.614 4.314 1.7 0.0752 
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The state space model (6) can be 

linearized about an operating point (xO1, 

xO2) using the Jacobi matrix J(t,d): 

)),().(,(
),(

0XdtXdtJ
dt

dtdX
−=  

For the nifedipine model the state-

space mathematical model can be 

represented in matrix form: 

)(.
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(7)

CONCLUSIONS 

Mathematical modeling has recently beco-

me a powerful tool for better under-

standing and simulating of processes. It 

can be used to describe, interpret, predict 

or explain. Simulation results can be 

obtained at lower cost than real experi-

mentation reducing the time and number 

of animals during the test. 

Using a specialized software the 

mathematical model of PRA as a function 

of nifedipine dose is obtained. The model 

shows, that the natural frequency of PRA 

system is dose independent. The parame-

ters ζ(d), К0(d) and Ku(d), have non-linear 

exponential dependence on the nifedipine 

dose. The model is filled out with dose-

dependent transfer function in Laplace 

domain and state space linearized model 

in matrix form. The proposed PRA model 

provides a means to study the role of 

various drugs and doses for regulation of 

renin-angiotensin system and human car-

diovascular status. 

In future the efforts will be oriented to 

formulation of PRA models after treat-

ment with different drugs (Tolekova et al., 

1995; 1996; Ilieva et al., 1994; 1995), fre-

quence and stability analysis of obtained 

models and comparison of received mo-

dels of studied drugs from the point of 

view of system theory. 

REFERENCES 

Bazaraa, M. S. & C. M. Shetty, 1979. Nonli-

near Programming. Theory and Algo-

rithms, John Wiley and Sons, New York, 

Chichester, Brisbane, Toronto. 

Carson, E. R., C. Cobelli & L. Finkelstein, 

1983. The Mathematical Modeling of 

Metabolic and Endocrine Systems, Wiley, 

New York. 

Ilieva, G., К. Trifonova, A. Tolekova & A. Lo-

gofetov, 1994. Plasma renin activity in ta-

chistin-stimulated hypercalcemia and un-

der the effect of chlorazine. Experimental 

Medicine and Morphology, 32, No 3−4, 

1−7 (BG).  

Ilieva, G., A. Tolekova, E. Slavov, A. Par-

vanova & A. Logofetov, 1995. The change 

of electrolyte balance and renin-angio-

tensin-aldosterone system after peroral and 

intraperitoneal treatment with nifedipine. 

In: Acid-base and Electrolyte Balance, 

Molecular, Cellular, and Clinical Aspects. 

Papers from the Second G. A. Borelli 

Conference, July 8−9, eds. Natale Gaspare 

de Santo & Giovambatista Capasso. 

Istituto Italiano per gli Studi Filosofici, 

Naples, 335−340. 

Lijung, L. 1999. System Identification: Theory 

for the User, 2nd edn, Prentice Hall ECS 

Professional, Upper Saddle River, NJ. 

Petrov, N., 2005. Stochastic approximation for 

estimation of biological models. Trakia 

Journal of Sciences, 2, 17−21. 

28 



A. Tolekova &  K. Yankov 

BJVM, 11,  No 1 15 

Pohjanpalo, H., 1978. System identifiability 

based on the power series expansion of the 

solution, Mathematical Biosciences, 41, 

21–33. 

Tolekova, A., G. Ilieva, M. Tzaneva, & M. 

Ganeva, 1995. Effect of acute and chronic 

acetylsalicylic acid administration on re-

nin-angiotensin-aldosterone system and 

stomach mucosa in rats. Endocrine Regu-

lations (Bratislava), 29, No 2, 115−120. 

Tolekova, A., G. Ilieva & A. Parvanova, 1996. 

Comparison of the effects on RAAS of the 

combination of ACE inhibition with 

calcium channel blockade. In: Annual Pro-

ceedings of the International Medical 

Association Bulgaria (IMAB) (scientific 

papers), 2, No 1, 209−210.  

Tolekova, A., 1998, Functional analysis of 

changes in PRA after some pharma-

cological influences. In: Proceedings of 

the  50th Anniversary of the Union of Sci-

entists in Bulgaria, Plovdiv, 2, 11−14.  

Tolekova, A., K. Yankov & V. Spasov, 1998. 

Dynamic parameters of plasma renin acti-

vity after blocking of l- and t- type voltage-

dependent calcium channels. In: Procee-

dings of Ninth National Conference "Mo-

dern tendencies in the development of fun-

damental and applied sciences", June 5−6 
1998, Stara Zagora, Bulgaria, 198−203 
(BG). 

Tolekova, A. & K. Yankov, 2002. System 

analysis of plasma renin activity upon con-

dition of pharmacological and physiolo-

gical stimulation. In: Proceedings of Jubi-

lee Scientific Conference, October 18−20 

2002, Stara Zagora, Bulgaria, vol. 1, 

Biomedical Sciences, 61−65 (BG). 

Tolekova, A., 2003. Study of plasma renin 

activity after some physiological and 

pharmacological influences. Ph.D. Thesis, 

Sofia (BG). 

Tolekova, A. & K. Yankov, 2006. Model of a 

plasma renin activity after nicardipine 

treatment. Journal of Information, Control 

and Management Systems (Slovakia), 4, 

203−212. 

Vajda, S., K. Godfrey & H. Rabitz, 1989. 

Similarity transformation approach to 

identifiability analysis of nonlinear com-

partmental models. Mathematical Bio-

sciences, 93, 217–248. 

Wolkenhauer, O., 2005. Systems Biology 

Dynamic Pathway Modelling. http:// www. 

sbi.uni-rostock.de/dokumente/t_sb.pdf 

(March 9 2008: date last accessed). 

Yankov, K., 1998a. Software utilities for 

investigation of regulating systems. In: Pro-

ceedings of 9th National Conference "Mo-

dern Tendencies in the Development of 

Fundamental and Applied Sciences", June 

5−6 1998, Stara Zagora, Bulgaria, 401−408. 

Yankov, K., 1998b. Evaluation of some dyna-

mic characteristics of transient processes. 

In: Proceedings of the 12th International 

Conference Saer '98, St. Konstantin Resort, 

September 19−20 1998, Varna, Bulgaria, 

113−117. 

Yankov, K., A. Tolekova & V. Spasov, 1998a. 

Mathematical modelling of drug-induced 

changes in plasma renin activity, Pharma-

cia, 45, No 1, 26−29. 

Yankov, K. & A. Tolekova, 1998b. Functional 

analysis of biological data. In: Procee-

dings of 50-th Anniversary of the Union of 

Scientists in Bulgaria, Plovdiv, Vol.2, 

53−56. 

Yankov, K., 2006. System identification of 

biological processes. In: Proceedings of 20-

th Inernational Conference "Systems for 

Automation of Engineering and Research 

(Saer-2006), St. Konstantin Resort, Sep-

tember 22−24, Varna, Bulgaria, 144−149. 

 

Paper received  15.03.2007; accepted for 

publication 12.11.2007 

 

Correspondence:  

Anna Tolekova, MD, PhD 

Department of Physiology and Pharmacology, 

Medical Faculty, Trakia University, 

11 Armeiska str,  

6000 Stara Zagora, Bulgaria. 

29 



Mathematical model of plasma renin activity after nifedipine treatment  

BJVM, 11, No 1 16 

  

 

30 


