PREVALENCE OF YERSINIA ENTEROCOLITICA IN RAW SMALL RUMINANT MILK IN SHAHREKORD, IRAN

S. M. ALAVI¹, E. RAHIMI² & E. TAJBAKHSH³

¹Graduated of Veterinary Medicine; ²Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; ³Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

Summary

Yersinia enterocolitica is a common food-borne pathogen involved in yersiniosis among humans. The present study aimed to isolate virulent Y. enterocolitica from small ruminant milk in Shahrekord, Iran. One hundred raw milk samples of 84 sheep and 16 goats were collected from different parts of Shahrekord, during fall 2015. The samples were studied by microbial method and the positive-culture samples were investigated using PCR techniques. According to the results, 9% of all samples (sheep milk) were positive after microbial culture; subsequently 5% of positive samples were confirmed as O:3-positive bioserotypes. After gene detection, the ail gene was found in 4 isolates, the yadA gene in 3, the virF and ystA genes in 2 Y. enterocolitica strains. Isolation of Y. enterocolitica from raw milk suggested a high risk of yersiniosis associated with consumption of raw sheep milk.

Key words: goat, milk, sheep, Yersinia enterocolitica

INTRODUCTION

Yersinia enterocolitica is a small rod-shaped Gram-negative coccobacillus psychrotrophic enterobacterium, isolated from a variety of environmental sources, foods, and human clinical samples (Thorner et al., 2003; Soltan-Dallal et al., 2004; Myers et al., 2006; Lambertz et al., 2008). Y. enterocolitica is well known as a cause of yersiniosis in humans (Bernardino-Varo et al., 2012). The most common clinical manifestation of yersiniosis is self-limiting gastroenteritis; however the extraintestinal manifestations and post infectious sequelae such as reactive arthritis and erythema nodosum occur as well (Elisa et al., 2010). Y. enterocolitica can grow to large numbers at refrigeration temperatures, so milk contaminated with that organism could becomes a significant health risk for consumers (Hanifian & Khani, 2012; Jamali et al., 2013; 2015).

Most laboratories do not routinely screen for Yersinia species, which may explain its infrequent identification (Sal-
Prevalence of Yersinia enterocolitica in raw small ruminant milk in Shahrekord, Iran

tan-Dallal et al., 2004). The efficiency of PCR method is much more reliable than that of the culture method in detection of the virulent Y. enterocolitica. Direct isolation, even on selective medium is time-consuming yet seldom successful. Besides, there is no comprehensive culture method which could recover all pathogenic strains. Therefore, the low rates of isolation of pathogenic Y. enterocolitica in natural samples may be due to the limited sensitivity of culture methods (Rahimi et al., 2014). In Iran the consumption of raw milk has traditionally been a very common practice. However, very little information is available on the prevalence of Y. enterocolitica in dairy products.

The aim of this study was to determine the prevalence of Yersinia enterocolitica in raw small ruminant milk in Shahrekord, Iran.

MATERIALS AND METHODS

Sample collection
A total of 100 raw milk samples, including 84 sheep milk samples, and 16 goat milk samples, were obtained from sheep and goat pens in various parts of Shahrekord, Iran, from October 2015 to November 2015. Each sample was collected in clean, dry and sterile sampling bottle labelled to identify the source, site, and date of sampling. Transportation of the samples to the laboratory was done in ice boxes within 4 h after collection (Jamali et al., 2013).

Culture methods
Aliquots of 500 µL of each milk sample were aseptically transferred into 5 mL Yersinia Enrichment Broth and the samples were incubated for 48 h at 29 °C. Then, a loopful of the mixture was streaked on Cefsulodin-Irgasan-Novobiocin Agar plates (CIN) and incubated for 24 h at 37 °C. The presumptive isolates were examined for response to biochemical tests such as Gram reaction, oxidase and catalase tests, indole production, etc.

PCR protocol
Purification of DNA from bacterial colonies was achieved using a genomic DNA purification kit (Fermentas, Germany) according to the manufacturer’s instructions. The PCR reaction was carried out by thermal cycler (Eppendorf AG, Hamburg, Germany) under the following conditions: an initial denaturation at 94 °C for 4 min, 35 cycles of 94 °C for 30 s (denaturation), 60 °C for 1 min (annealing) and

Table 1. Primers used for detection of the various virulence genes of Y. enterocolitica

<table>
<thead>
<tr>
<th>Primer sequence (5´-3´)</th>
<th>Primer name</th>
<th>Gene</th>
<th>Amplicon length (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTTCAGATACCTGGTCGCTGT</td>
<td>yadA1</td>
<td>yadA</td>
<td>849</td>
<td>Saberianpour et al., 2014</td>
</tr>
<tr>
<td>GAACTGCTTGAGATCCCTGAAAACCG ACTGATGATAACTGGGGAG</td>
<td>YC2 Ail1</td>
<td>ail</td>
<td>170</td>
<td>Collee et al., 1998</td>
</tr>
<tr>
<td>CCCCCAGTAATCCATAAAAGG AATGCTGTCCTCATTGGGACAGCA</td>
<td>Ail2 Pr2a</td>
<td>ystA</td>
<td>145</td>
<td>Lambertz et al., 2008</td>
</tr>
<tr>
<td>TCGGACAGAACAGCAGTACAG ACTCATCTTACCATTAGAAG</td>
<td>virf1 virf2</td>
<td>virF</td>
<td>590</td>
<td>Carter, 1994</td>
</tr>
</tbody>
</table>
72 °C for 1 min (extension), followed by a final extension at 72 °C for 5 min (Thisted Lambertz & Danielsson-Tham, 2005). Detection of the *ail*, *yadA*, *ystA*, and *virF* genes was carried out using a multiplex PCR as described by Platt-Samoraj *et al.* (2006).

To specifically amplify the *Y. enterocolitica* O:3 serotype, a set of primers, (Yer O3-F:CGCATCTGGGACACTAATTCG) and (Yer O3-R:ACGAATTCCATCAAAAACCACC), was used for detecting *rFbC* gene (Rahimi *et al.*, 2014). The primers of the various virulence genes used in the study are given in Table 1. The PCR products (454 bp) were visualised by agarose gel electrophoresis followed by staining of the agarose gel (1%) (Invitrogen, California, USA) with ethidium bromide (0.5 mg/mL) (Merck, Darmstat, Germany). A 100-bp DNA ladder (Fermentas, St. Leon-Rot, Germany) was used to determine the size of PCR product.

RESULTS

After culturing on selective medium, 9 sheep milk samples (9%) positive for *Y. enterocolitica* were detected. No *Y. enterocolitica* was isolated from goat milks. After PCR examination, the genes of *Y. enterocolitica* were isolated from the positive-culture samples and all of these samples were confirmed. Subsequently, 5% of positive samples were confirmed as O:3-positive bioserotypes (Table 2).

For gene detection, *ail*, *yadA*, *inv*, *ystA*, and *virF* were PCR-amplified and individual amplified fragments were subjected to agarose gel electrophoresis. According to the results, the *ail* gene was found in 4 isolates, the *yadA* gene in 3, the *virF* and *ystA* genes in 2 of *Y. enterocolitica* strains (Fig. 1).

![Fig. 1. Agarose gel electrophoresis of polymerase chain reaction products (genes from *Yersinia enterocolitica*) amplified with the multiplex polymerase chain reaction method. Gene biotypes: ail, 170 bp; yadA, 849 bp; ystA, 145 bp; virF, 590 bp. M: 100 bp ladder, 1: negative control, 2, 3 and 5: positive samples, 4: positive control.](image-url)

Table 2. Prevalence of *Yersinia enterocolitica* in raw milk samples, serotyping, and PCR analysis of *ail*, *yadA*, *virF* and *ystA* genes in isolates of *Y. enterocolitica*

<table>
<thead>
<tr>
<th>Samples</th>
<th>No. of samples</th>
<th>Yersinia enterocolitica</th>
<th>O:3 Serotype</th>
<th>Virulence genes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ail</td>
<td>yadA</td>
</tr>
<tr>
<td>Sheep milk</td>
<td>84</td>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Goat milk</td>
<td>16</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 1. Agarose gel electrophoresis of polymerase chain reaction products (genes from *Yersinia enterocolitica*) amplified with the multiplex polymerase chain reaction method. Gene biotypes: *ail*, 170 bp; *yadA*, 849 bp; *ystA*, 145 bp; *virF*, 590 bp. M: 100 bp ladder, 1: negative control, 2, 3 and 5: positive samples, 4: positive control.
DISCUSSION

Milk has exceptional nutritional value, as the most complete and balanced food, exclusively consumed by humans in their very early life and excellent at any age (Giannino et al., 2009). Several studies indicated that yersiniosis in humans was caused by consumption of contaminated food. In this study, Y. enterocolitica was isolated from 9 (9%) of the 100 milk samples tested (Table 2).

In this study, the prevalence of Y. enterocolitica, O:3 serotype, was 5%. Similar results were reported in different parts of Iran; Isfahan, Iran (5.07%) (Rahimi et al., 2014), Varamin, Iran (6.5%) (Jamali et al., 2015), northern-west of Iran (7.62%) (Hanifian & Khani, 2012).

In the present study sheep milk samples showed the prevalence of Y. enterocolitica contamination (9 out of 100; 9%). No Y. enterocolitica was isolated from goat milks. In comparison to goats, sheeps usually have a mass of fat attached to the back of their rump and it is in touch with faecal contamination. Thus sheep milk would be contaminated by faeces during milking. This contamination is similar or lower and higher than that observed in the survey previously conducted in Iran and other countries on several kinds of dairy products. In Turkey, 47.3% prevalence of Y. enterocolitica contamination was observed (Yucel & Ulusoy, 2006). In Mexico, Bernardino-Varo et al. (2012) reported a 34.92% prevalence of Y. enterocolitica contamination. In our study 9 sheep milk samples (9%) were positive for Y. enterocolitica. In Iran, Jamali et al. (2015) showed that Y. enterocolitica contamination of sheep milk samples was 3% and that of goat milk samples – 2.4%.

Y. enterocolitica is one of the most common causes of foodborne gastroenteritis in western and northern Europe. The incidence is also increasing in the United States and Canada, although this may be a result of improved surveillance and detection methods (Weynants et al., 1996; Lamps et al., 2001). Bacteriological examination and bio- and serotyping, commonly applied in diagnostics of infections with Y. enterocolitica, are time consuming and labour intensive, while at the same time they do not clearly identify pathogenic strains. Molecular methods, such as the multiplex PCR, which is particularly useful in showing the presence or absence of fragments of several genes, were used in this study for determining the prevalence of virulence genes in Y. enterocolitica (Weynants et al., 1996). The pathogen was isolated from 13.6% of frozen dairy products in China (Ye et al., 2014) which is in agreement with our study. In the present research, 9% of total samples including sheep milks were positive after microbial culture; subsequently 5% of positive samples were confirmed as O:3-positive bio-serotypes. In a study performed by Jamali et al. (2015), the ystA gene was observed in all the isolates having bio-serotypes 1B/O:8 or 4/O:3. However, the ail gene was only detected from biotype 4/O:3 and all isolates of Y. enterocolitica biotype 1A harboured only the ystB gene. Hanifian & Khani (2012) reported 2.26% isolation of the ail gene of raw milks and cheese samples. In this research the ail gene was found in 4 isolates, the yadA gene in 3, the virF and ystA genes in 2 of Y. enterocolitica strains. In Iran (Shahrekord), Saberianpour et al. (2014) detected 65 contaminated samples among the 300 samples of chicken meat purchased from different markets. In our study, 9 samples of sheep milk were positive for Y. enterocolitica strains.
Among the serogroups that cause disease in humans, O:3, O:8, O:9, and O:5,27 are the most prevalent. Strains belonging to bioserotype O:3 are the most frequently detected pathogenic Y. enterocolitica over the world (Garzetti et al., 2014). In the United States but also in Europe, Y. enterocolitica O:3 is the serotype most frequently implicated in disease (Bernardino-Varo et al., 2012). In our research, a specific detection was obtained with rFbC primers, which included a PCR product of the expected size exclusively with pathogenic Y. enterocolitica of serotype O:3.

Virulence genes, such as ail and yst, are located on the bacterial chromosome. The Ail protein is encoded by the ail gene and occurs only in pathogenic Y. enterocolitica; it helps the bacterial adhesion to the host cell as well as intensifies resistance to the bactericidal effects of complement (Hanifian & Khani, 2012; Jamali et al., 2015). Moreover, the yst gene, which encodes the thermostable enterotoxin Yst protein, facilitates the invasion of the pathogen into tissues. The YstA and YstB are produced by pathogenic and nonpathogenic Y. enterocolitica (Saberi-anpour et al., 2014). In a research performed by Saberianpour et al. (2014), multiplex PCR assay results showed that chromosomal virulence genes included inv (100%), ail (50%) and ystA (51.85%), and plasmid-encoded virulence factors included yadA (44.74%) and virF (35.18%). In another study, the ail gene was found in 100% of pathogenic Y. enterocolitica strains and the yadA gene in only 86% of pathogenic Y. enterocolitica strains, but neither of the genes were detected in nonpathogenic strains of Yersinia spp. (Blais & Phillippe, 1995). In this research, multiplex PCR test results showed the ail gene in 4 (4%) isolates, the yadA factor in 3 (3%), the virF and ystA genes in 2 (2%) of Y. enterocolitica strains.

These results show that sheep milk and its traditional products can be a risk factor for public health of humans. There are not precise data on the consumption of raw small ruminant’s milk or on the frequency of this organism. Furthermore, no routine search for this bacterium is performed, making it impossible to know its real epidemiological relevance and the potential health risk for the population consuming raw milk. For these reasons and because there has been scant research related to food contamination by Y. enterocolitica, this work sought to demonstrate the presence of this bacterium in raw milk of sheeps and goats in Shahrekord and to find the most abundant bioserotypes in these samples. This study showed that the prevalence rate of virulent Y. enterocolitica was relatively high and demonstrated the potential for the transmission of the bacterium to humans via the consumption of raw and non-pasteurised milk and dairy products.

ACKNOWLEDGEMENTS

The authors would like to thank the staff of Islamic Azad University, Shahrekord branch that assisted in this research. This article was extracted from the DVM thesis “code: 13310501942008”.

REFERENCES

Yersinia enterocolitica. *Food Control Journal, 6*, 211–214.

Thoerner, P., C. I. Bin Kingombo, K. Bogli-Stuber, B. Bissig-Choisat, T. M. Was-

Paper received 24.11.2016; accepted for publication 06.02.2017

Correspondence:

Prof. Ebrahim Rahimi
Department of Food Hygiene,
Faculty of Veterinary Medicine,
Shahrekord Branch, Islamic Azad University,
Shahrekord, Iran
Tel: +98 38 33361060, Fax: +98 31 36259809
Email: ebrahimrahimi55@yahoo.com; rahimi@iaushk.ac.ir