PREVALENCE AND GENETIC CHARACTERISTICS OF SALMONELLA STRAINS IN WILD MALLARD DUCKS (ANAS PLATYRHYNCHOS) IN SEMNAN SUBURB, IRAN

H. STAJI¹, S. REZAEI², M. RASSOULI¹ & S. NAMROODI³

¹Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran; ²Graduated student, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran; ³Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran

Summary

Wild birds serve as major reservoirs for transmission of Salmonella to domestic animals and humans. Given the zoonotic potential of salmonellosis, the main goal of this research was to investigate the prevalence and molecular epidemiology of S. enterica infections in wild Mallard ducks. Faecal samples (n=247) from wild Mallard ducks were tested for the prevalence of Salmonella spp., and genotypes of strains were then differentiated by multiplex PCR. From the 247 faecal samples, 18 (7.29%) were positive for Salmonella spp. Biochemically the most predominant serovars were S. Typhimurium and S. Enteritidis (10 and 6 cases each, respectively), whereas only 2 serovars belonged to S. Infantis. Among the 10 S. Typhimurium serovars, nine strains were positive for rfbJ, fliB, invA, and fliC genes based on multiplex PCR assay and one strain contained only the invA gene. In S. Enteritidis serovars, PCR generated amplification products for spv and sefA genes, and a random sequence in all samples. The two S. Infantis contained the random sequence specific for Salmonella genus. With respect to the circulation of virulent Salmonella in wild ducks of Semnan suburbs, more work to assess the correlation of strains from wild life with human and livestock strains is needed.

Key words: Mallard ducks, multiplex PCR, Salmonella, Semnan

INTRODUCTION

Salmonella is an enteric, facultative intracellular and zoonotic pathogen which is widely distributed in the environment, wild life, pets and animals we use for food. Diseases in both animals and humans worldwide are caused by different serotypes and strains of the bacterial species Salmonella enterica subsp. enterica (Albufera et al., 2009; Pan et al., 2010). Through the ages, wildlife has been a sig-
Prevalence and genetic characteristics of Salmonella strains in wild Mallard ducks (Anas ...)

significant source of infectious diseases transmissible to humans (Mirzaei et al., 2010). Today, zoonosis with a wildlife reservoir constitutes a superior public health problem, affecting all continents. Salmonella spp., are commonly found in the intestines of wild birds and these animals can acquire these pathogens from contaminated environments and extend it directly to humans or indirectly by contaminating commercial livestock operations (Kruse et al., 2004; Mirzaei et al., 2010). The importance of Salmonella strains lies in the fact that they are found relatively commonly in different hosts and wild birds may function as effective spreaders of these pathogens (Tizard, 2004), but little is known about the relationship between wild bird Salmonella strains and human and livestock strains in regions of Iran, particularly with respect to the virulence genes they contain and their serotype profiles. As some bird species like colonial water birds, predators, passerines and siskins can play an important role as reservoirs of Salmonella spp., and distributing these agents to the environment and other hosts via droppings, contact or other routes of transmission (Peighambari et al., 2010), the aim of this study was isolation and prevalence assessment with genotyping of Salmonella strains from wild Mallard ducks in Semnan suburbs, Iran.

MATERIALS AND METHODS

Samples, isolation, identification & serotyping of Salmonella

Two hundred forty-seven fresh faecal samples of Mallard ducks (Anas platyrhynchos) were collected during a 6-month period in winter 2015 from protected areas in suburbs of Semnan, Iran. Semnan city is the administrative center of the Semnan province (35°34'31" North, 53°23'39" East). This city consists of two major geographical areas; the mountainous to the north, and the fertile outskirts and plains to the southern deserts; so Semnan is significant for its variable climate. Faecal samples were transported immediately to the microbiology laboratory on ice packs, and Salmonella isolation was performed as described by Mirzaei et al. (2010) as followed. Faecal samples were cultured in selenite F medium, incubated at 37 °C for 18 h, then each sample was inoculated on Brilliant Green agar (BG) and Salmonella-Shigella agar (SS) plates. The plates were incubated at 37 °C for 24 h. Doubtful colonies morphologically alike Salmonella were subcultured for biochemical examination. Recognition of the biochemical characteristics was done using triple sugar iron (TSI) agar, lysine-iron agar (LIA) medium, urea agar, motility in SIM agar, Simmon’s citrate agar, and lactose, sucrose, maltose, and mannitol broth media.

The Salmonella isolates were cultured onto TSI slant medium and grown overnight at 37 °C, and afterward were tested using antisera O (B, D, E, C) and H based on slide and tube agglutination tests to determine O and H antigens, respectively (Mirzaie et al., 2010). Briefly, each suspect culture was mixed with a drop of polyvalent antisera and incubated for up to 2 min at room temperature. Positive reactors were then tested separately with different somatic O monovalent and flagellar H monovalent antisera to determine the serogroups and serotypes of the isolates.

DNA extraction & multiplex PCR

Prior to genome extraction, isolated Salmonella strains were grown up in Luria Bertani agar (LB) plates and incubated at 37 °C for 24 h, next, genomic DNA was
extracted from isolated strains with the Rapid One-Step Extraction (ROSE) method described by Osmundson et al. (2013). Multiplex PCR was conducted with 2 independent sets for DNA amplification and consolidation of *S. Typhimurium* and *S. Enteritidis* (primers sequences used in the study are submitted in Table 1). For *S. Typhimurium*, PCR was performed in a 25 μL volume containing 40 ng of total *S. Typhimurium* extracted DNA, 1.5 mM MgCl₂, 0.5 μM of primer, 1 U of Smartaq DNA polymerase and 200 mM dNTP mix in 1× PCR buffer. Thermal programme and electrophoresis conditions were as previously described (Zahraei Salehi et al., 2007). For *S. Enteritidis*, PCR was performed in a total volume of 25 μL amplification mixture consisting of 2.5 μL of 10× reaction buffer (500 mM KCl, 200 mM Tris-HCl), 0.8 μL dNTPs (10 mM), 1 μL MgCl₂ (50 mM), 1.25 μL of each primer (10 μM), 0.6 μL of Taq DNA polymerase (Fermentase) and 3 μL of DNA that extracted as template and 9.6 μL of distilled water with thermal programme and electrophoresis condition described by Pan & Liu (2002).

RESULTS

Bacterial colonies appearing red-pink opaque coloured in BG agar and transparent or translucent colourless with black centres in SS agar were chosen for more biochemical tests. Colonies showing alkaline/acid with H₂S production in TSI agar, lysine decarboxylation in bottom and negative deamination on slant part of LIA agar with H₂S, negative urease activity and autotrophy reaction in citrate agar with the following sugar fermentation characteristics: lactose (−), sucrose (−), maltose (+), and mannitol (+) were diagnosed biochemically as *Salmonella*.

<table>
<thead>
<tr>
<th>Salmonella serotype</th>
<th>Primer</th>
<th>Target gene</th>
<th>Sequence (5′–3′)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella Typhimurium</td>
<td>ST139-s</td>
<td>invA</td>
<td>GTGAAATTATCGCCACGTTGCGGCAA TCATGCGACCCTCAAAAGGACC</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>ST141-as</td>
<td>rfbJ</td>
<td>CCAGCACCAGTCCAACTTGATAC GCCTCCGGCTTTATTGGAAGCA</td>
<td>663</td>
</tr>
<tr>
<td></td>
<td>Rfbj-s</td>
<td>fliC</td>
<td>ATAGCCATCTTACAGTTCCCCC GCTGCAACTTACAGCTATTGCC</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Rfbj-as</td>
<td>fliB</td>
<td>ACGAATTGACGGGTCTCTGTAACC TACCGTCGATAGTAACACTCGG</td>
<td>526</td>
</tr>
<tr>
<td>Salmonella Enteritidis</td>
<td>ST11</td>
<td>random sequence</td>
<td>GCCAACCATGCTAAATTGGGCACA GGTAGAAATTCCACGGGTGACTCG</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>ST14</td>
<td>Spv**</td>
<td>GCCGTACAGGCTTATAGA ACCTACGCGGCAACAATAC</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>sefA***</td>
<td>GCAGCGTTACTATGCGAC ACCTACGGGCAACATAC</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td></td>
<td>TGTGACGGGCAATTTAGCG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEFA2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEFA4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

randomly cloned sequence specific for the genus *Salmonella*; ** *Salmonella* plasmid virulent gene; *** *S. Enteritidis* fimbrial antigen gene.
Prevalence and genetic characteristics of Salmonella strains in wild Mallard ducks (Anas ...)

Table 2. Distribution of Salmonella serotypes within faecal samples of wild Mallard ducks

<table>
<thead>
<tr>
<th>Isolated serotype</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Typhimurium</td>
<td>10/247</td>
<td>4.0%</td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td>6/247</td>
<td>2.4%</td>
</tr>
<tr>
<td>S. Infantis</td>
<td>2/247</td>
<td>0.8%</td>
</tr>
<tr>
<td>Total</td>
<td>18/247</td>
<td>7.2%</td>
</tr>
</tbody>
</table>

Based on the mentioned isolation protocol eighteen Salmonella enterica strains (7.2%) were isolated from 247 faecal samples of wild Mallard ducks living in Semnan suburbs (Table 2). Serotyping of the isolates showed that Salmonella Typhimurium (4%) was the most common serotype identified, then Salmonella Enteritidis (2.4%) and Salmonella Infantis (0.8%), respectively.

Genotyping of the collected Salmonella strains revealed that nine S. Typhimurium strains harboured invA, rfbJ, fliC and fljB orf’s (open reading frames) and only one S. Typhimurium isolate was negative for the invA gene (Fig. 1). All six strains belonging to S. Enteritidis serotype

Fig. 1. Multiplex polymerase chain reaction for detection of S. Typhimurium. Lane M: 100 bp marker; lane B: negative control; lanes 3–11: S. Typhimurium isolates; lanes 1–2: S. Infantis isolates harbouring random sequence specific for Salmonella genus.

Fig. 2. Multiplex polymerase chain reaction for detection of S. Enteritidis. Lane M: 100 bp marker, lane B: negative control; lanes 1–5: S. Enteritidis isolates.
were positive for random sequence, *spv* and *sefA* genes (Fig. 2). The two serologically identified *Salmonella* Infantis were positive for the random sequence which is particular for the genus *Salmonella* and no more genotyping work was performed for them (Fig. 1).

DISCUSSION

Free-living birds are propounded to be potential carriers of zoonosis and to play a role in the ecology and circulation of several pathogens such as *Salmonella* (Krawiec et al., 2015). Wild birds not only function as effective spreader’s of this infectious agent to humans and to different animal species through contamination of the environment, but also cases of suspected bird to human transmission of the bacterium have been reported (Alley et al., 2002; Handeland et al., 2002). Many studies have been done in different countries to check the outbreak of *Salmonella* in wild birds and a wide variety of serovars has been reported (Hoelzer et al., 2011). It’s suggested that certain serotypes and strains of *S. enterica* subsp. *enterica* are associated with different groups of wild birds (Refsum et al., 2002; Pennycott et al., 2010). Mallard ducks may pose a so far underestimated risk to human and animal health by transmitting *Salmonella* spp. via their faecal deposits to various environmental sources. The results of our study showed that *S. Typhimurium* and *S. Enteritidis* are the most frequently serotypes among wild Mallard ducks in Semnan suburb in parallel with results of other studies introducing these serotypes of *Salmonella* as predominant strains circulating in wild birds (Čížek et al., 1994; Kapperud et al., 1998). According to the Centers for Disease Control and Prevention, *S. Typhimurium* and *S. Enteritidis* are the two serovars associated most commonly with human disease, and therefore of importance to public health (CDC, 2004). Previous studies indicate that the prevalence of *Salmonella* infection among wild birds is variable and factors like migration patterns, season or feeding behaviour can influence the prevalence of the agent in such hosts (Kirk et al., 2002; Kobayashi et al., 2007; Skov et al., 2008; Gaukler et al., 2009). The present study showed a *Salmonella* prevalence of 7.2% in Mallard ducks. It was evaluated as a high risk, because some authors indicate that a prevalence in wild birds, especially colonial water birds has increased significantly in recent years, and these animals can easily transmit this pathogen to other animals and hosts by contaminated faeces, since they often gather in very large numbers (Peighambari et al., 2010). Activities such as hunting, human behaviours and populational factors can also influence the epidemiology of this infectious agent (Kruse et al., 2004).

Serotyping of our *Salmonella* isolates from the free-living Mallard ducks in Semnan suburb, showed that 4% of strains belonged to *S. Typhimurium* serotype, 2.4% – to *S. Enteritidis* and about 0.8% – to *S. Infantis*. Subtyping of *S. enterica* has been typically carried out by serotyping, a method in which surface antigens are recognised on the basis of agglutination reactions with particular antibodies (Wattiau et al., 2011). Despite several studies showing the prevalence and serotypes of *S. enterica* isolated from various hosts (Tizard, 2004; Coburn et al., 2007; Pennycott et al., 2010), serotyping presents no information about the phylectic relationships inside the different *S. enterica* subspecies for epidemiological investigations and for such purposes, the use of methods

H. Staji, S. Rezaei, M. Rassouli & S. Namroodi
that can reveal the genotype of causative strains at a taxonomic level far more particular than that obtained by serotyping, is needed (Wattiau et al., 2011). By the PCR method, in vitro DNA amplification is a powerful tool in microbiological diagnostics and several markers such as virulence chromosomal genes and genes involved in the synthesis of flagellin have been used to detect Salmonella in environmental and natural samples as well as food and faecal samples (Malorny et al., 2003; Jamshidi et al., 2010). All of our Salmonella isolates were positive for invA gene which contains sequences unique to this genus, encoding a protein in the inner membrane of bacteria responsible for invasion to the epithelial cells of the host (Shanmugasamy et al., 2011). The amplification of this gene now serves as an international standard for detection of Salmonella genus with potential diagnostic applications (Malorny et al., 2003). In the present study, S. Typhimurium strains were monitored for the presence of fliC and fljB genes encoding phase-1 and phase-2 flagella and rfbJ gene coding for CDP-abequose synthase (Lim et al., 2003; Dilmaghani et al., 2010; Jarvik et al., 2010). Nine of our isolates were harbouring all three genes, while one isolate was negative for all three genetic markers. Lim et al. (2003) designed this triplex PCR based on detection of fliC, fljB and rfbJ indicating that this method is useful for specific detection of S. Typhimurium and discrimination of this serovar between other S. enterica serovars. Our results confirm that serotyping of Salmonella isolates in epidemiological investigations may not be sufficient enough, so molecular and genetic typing seems to be necessary. Also, Salmonella strains diagnosed as S. Enteritidis were evaluated for the presence of a random sequence, spv and sefA genes in a Triplex PCR assay (Table 1). All the six serologically identified S. Enteritidis isolates were positive for the presence of the related genes confirming the virulence of strains and results of the serotyping, because spv and sefA genes are related to virulence and important for discrimination of S. Enteritidis from non-Enteritidis strains. The results of the present study showed that Salmonella strains circulating in wild Mallard ducks living in the Semnan suburb are potentially virulent for other hosts such as human and livestock because they contained virulence genes. Their importance and risk is higher considering that most published studies elsewhere in livestock emanate from small epizootics and are of either dead birds at feeding stations or infected birds in or around farms where the livestock was infected with Salmonella (Hatanaka et al., 2003). Waterfowl isolates could rapidly spread to other ducks because of their colonial and gathering characteristics.

It would be worthwhile understanding the relationships between wild and domesticated hosts of different regions in greater detail for epidemiological surveillance and for assessment of the risk of wild birds as reservoirs or vectors of Salmonella infections (Hughes et al., 2008), as few studies have been conducted in wildlife species in Iran on this subject. Recognition of Salmonella can be performed via both molecular and serotyping methods. Although serotyping offers a reliable method for differentiating strains of the agent, the molecular identification of this bacterium seems to be necessary for epidemiological researches, evaluation of virulence potential of the isolates and confirmation of serotyping results because of the high sensitivity and specificity of these techniques (Mirzaie et al., 2010). Genotyping of Salmonella strains from diffe-
rent hosts and sources in the area by methods like DNA microarrays, pulse-field gel electrophoresis is recommended to understand the relationship of the strains from wild birds, livestock and human cases with salmonellosis (Staji et al., 2015).

CONCLUSIONS

Molecular characterisation of the Salmonella isolates collected from wild ducks living in Semnan suburbs, Iran, showed that S. Typhimurium and S. Enteritidis are probably the most prevalent serotypes in these hosts. The multiplex PCR could be used as a reliable method of identifying and genotyping Salmonella serovars. According to this study wild ducks may play an important role as significant reservoirs of zoonotic pathogens such as Salmonella for livestock and humans. More genotyping work would be necessary to understand the relationships of Salmonella serotypes between wild and domesticated animal hosts and humans in a defined region.

ACKNOWLEDGEMENTS

The authors would like to thank Mrs. Behnaz Raesian for collaboration in Salmonella isolation from faecal samples and Mrs. Nooshin Zabih for English edition of manuscript. This work was supported by Faculty of Veterinary Medicine in Semnan University, Semnan, Iran.

REFERENCES

Hoelzer, K., A. I. Moreno Switt & M. Wiedmann, 2011. Animal contact as a source of

