STUDIES ON THE SPECIFIC IMMUNODIAGNOSIS OF CYSTIC ECHINOCOCCOSIS IN CAMELS USING ENZYME-LINKED IMMUNOSORBENT ASSAY

O. M. KANDIL, N. M. F. HASSAN, D. SEDKY & E. BESHIR ATA

Department of Parasitology and Animal Diseases, National Research Centre, Cairo, Egypt

Summary

Cystic echinococcosis (CE) is of increasing public health and socio-economic concern because of the large morbidity rates and produced high economic losses in the livestock industry. The objective of the current research was to study the reliability of indirect ELISA in detecting CE, based on two different types of crude antigens of camel origin; protoscolex and germinal layer antigens from hydatid cyst. Blood samples were collected from 284 (125 slaughtered and 159 live camels). Out of 125 slaughtered camels examined visually, 55 (44%) were found to have hydatid cysts. Of them, 52/125 (41.6%) and 3/125 (2.4%) harboured hydatid cysts in lungs and livers respectively. Fertile lung cysts were 32.8%; 26.9% were sterile, while 40.3% of lung and liver cysts were calcified. The sensitivity of ELISA was 83% and 46.5% when protoscolex and germinal layer antigens were used, respectively. The respective specificity of antigens of protoscolex and germinal layer was 70.3% and 41.7%. The protoscolex antigen showed higher accuracy (73.6%) compared to the germinal layer antigen (52.8%). The cross reactivity of these antigens were evaluated with antigens and hyperimmune sera of CE and *Fasciola* spp. and *Haemonchus contortus* using ELISA. The results showed also weak immunogenic potency of each antigen with *Fasciola* spp. hyperimmune sera at dilution 1:50 while hyperimmune sera of *Haemonchus contortus* did not bind any antigen.

Key words: antigen, camel, cystic echinococcosis, ELISA, *Fasciola*, *Haemonchus*

INTRODUCTION

Cystic echinococcosis (CE; hydatidosis) is one of the widely distributed parasitic diseases with zoonotic importance. It is caused by ingestion of different *Echinococcus* species eggs (Samorek-Pieróg et al., 2016). The adult worm inhabits the small intestine of dogs as permanent hosts, while the larval stages or hydatid cysts occur in herbivorous intermediate hosts and sometimes in humans (Almalki et al., 2017). The disease can infect different animal species including camels with variable rates of infection (Kandil et al., 2016). Loss of body weight, decreased
fertility rate, and reduction of milk and wool production are the major clinical signs of infection (Torgerson, 2003). Abattoir surveys are important, particularly in the surveillance of many parasitic diseases including CE (Borji et al., 2012). Definite diagnosis of *Echinococcus granulosus* infection in animals is the first step for epidemiological studies and surveillance either in endemic, re-emergent or emergent transmission areas (Craig et al., 2015). No direct parasitological evidence was found for the presence of cysts in organs or tissues and in most cases, the early stages of infection are asymptomatic.

Imaging techniques, for example, ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) are utilised as often as possible for diagnosing CE. Ultrasound has been used widely because it is simple, noninvasive, and cost-effective (Ozkol et al., 2005). However, the accuracy of US-based screening relies greatly on the skills of the ultrasonographer (Yu et al., 2008). Han et al. (2016) demonstrated that ultrasonography appears to be the detection modality of choice. Serology could be used for detection of infection in the suspected individuals, especially when it is complicated to differentiate between some cyst stages from the common non-parasitic cysts (Brunetti et al., 2011). The accessibility of suitable serodiagnostic tools including enzyme-linked immunosorbent assay (ELISA) could help in diagnosing many infectious diseases in camels (Al-Ruwaili et al., 2012; Mohamed et al., 2013). Indeed, there are few serological studies on camel CE. Unfortunately local commercial anti-camel immunoglobulins are not currently available that is considered a main obstacle to diagnosis of camel antibodies using ELISA. However, it has been obtainable for many various parasitic research studies (Azwai et al., 1995), so sero-diagnostic studies should be directed to this significant and functional aspect.

The present study was aimed at evaluating native crude antigens of protoscolex and germinal layer implemented in ELISA for detection of specific IgG antibodies of CE in camels’ serum samples collected from Egyptian abattoirs and markets.

MATERIALS AND METHODS

Ethical approval

All animal experimental procedures were performed in accordance with the recommendations and guidelines stated by the ethical Committee of the National Research Centre under certificate number 17133.

Samples collection

Hydatid cysts were collected from the lung and liver of camels slaughtered at Cairo abattoir (EL-Basatin). One hundred and twenty five animals were visually examined after slaughtering. Infected camels were recorded and infected organs (52 lungs and 3 livers) were collected. Sixty seven hydatid cysts were removed carefully from their host tissue without injuring the cystic wall, washed thoroughly with tap water, rewashed in saline and kept in phosphate buffered saline (PBS) until use (Ahmed et al., 2006). The viability of protoscolex was determined by using eosin exclusion 10% solution (Macpherson et al., 1985). Adult worms of *Haemonchus contortus* and *Fasciola gigantica* were collected from slaughtered sheep at EL-Basatin abattoir in Egypt. Worm recovery was carried out according to standard procedures (MAFF, 1986).
Antigens preparation

The adult *Haemonchus contortus* worms, *Fasciola* species, germinal layer and protoscoleces of hydatid cyst were washed with PBS and subjected to grinding using a homogeniser followed by sonication and high-speed cooling centrifugation (14,000 rpm for 30 min). The supernatant was obtained and the process of centrifugation was repeated twice till no sediment was thrown down (Ahmed et al., 2006). The protein content of the different prepared antigens was determined according to Lowry et al. (1951).

Serum samples

Blood samples were collected from 284 camels included 125 slaughtered camels at El-Basateen abattoir, Cairo, and 159 randomly selected live camels from the market. Serum samples were prepared and kept at –20 °C until used.

Hyperimmune sera

Fifteen healthy White New Zealand male rabbits around 1.5–2 kg body weight were grouped in 5 groups (n=3) and immunised with the different prepared crude antigens (*germinal layer, protoscoleces, Fasciola species* and *Haemonchus contortus*). One group was kept as a control. Hyperimmune sera were prepared according to Fagbemi et al. (1995).

Serological analysis

The potency of protoscoleces and germinal layer antigens was evaluated by ELISA which was performed according to Sadjjadi et al. (2007). The optimal antigen, serum and conjugate concentrations were determined after preliminary checkerboard titration according to Catty & Raykundalia (1989). The antigen concentration was 20 µg/mL and 40 µg/mL for germinal layer and protoscoleces antigens respectively. After coating, blocking with 100 µL per well of 0.1% bovine serum albumin in 0.01 M PBS was done. From the natural infected sera of CE, non-infected sera, random sera from live camels and hyperimmune sera of CE, *Haemonchus contortus* and *Fasciola* species (diluted 1:50, 1:100, 1:200 in PBS), 100 µL were added to each well. One hundred µL of 1:1000 peroxidase conjugate anti-bovine IgG were used. Fifty µL of ortho-phenylenediamine was used as a substrate. The reaction was terminated with 1M H₂SO₄ and the absorbance values were read spectrophotometrically at 490 nm. Positive samples were assigned according to Rodriguez-Perez & Hillyer (1995) as those with absorbance readings greater than the cut-off value, which was calculated as mean OD of negative sera plus three standard deviations. Sensitivity, specificity and accuracy of ELISA were calculated as described by Timmreck (1994).

Statistical analysis

OD data were expressed as arithmetic mean with standard deviation. The apparent prevalence parameter was analysed using the Chi square test by statistical computer package for social science (SPSS) version 15.

RESULTS

Post mortem findings and CE infection percentage

Out of 125 slaughtered camels examined visually, 55 (44%) camels were infected with hydatid cyst and 70 (56%) were naturally non-infected camels. Fifty two lungs and three livers harboured hydatid cyst with infection percentage 41.6% and 2.4% respectively. The lungs were the most...
Studies on the specific immunodiagnosis of cystic echinococcosis in camels using enzyme-linked ... commonly affected organs with hydatid cysts. The examination of lung cysts demonstrated that 22 or 32.8% and 18 or 26.9% appeared fertile and sterile, while 40.3% of lung and liver cysts were calcified.

Immunogenic reactivity of different CE antigens

Two hundred and eighty four camel's sera were tested by ELISA using the protoscolex and germinal layer antigens to detect CE antibodies. The seropositive samples using protoscolex and germinal layer antigens were 89 (31.3%) and 144 (50.7%) respectively (Table 1). Most of the naturally infected camels were true positive – 28 and 27 using the protoscolex and germinal layer antigens respectively, while 27 and 28 false positive results were respectively recorded. Therefore, the results of ELISA showed that the germinal layer antigen detected the higher prevalence (44.3%) and protoscolex antigen noticed a lower prevalence (8.6%) of non-infected sera from slaughtered camels. Moreover, the germinal layer antigen had a higher diagnostic efficacy (54%) than the protoscolex antigen (34.6%) from random live camel sera. Nevertheless, sensitivity of ELISA was 83% and 46.5% when the protoscolex and germinal layer antigens were used, respectively. The specificity of antigens of protoscolex and germinal layer were 70.3% and 41.7%. The protoscolex antigen showed higher accuracy value (73.6%) compared to the germinal layer antigen (52.8%).

The diagnostic performances of the two antigens used in the study were evalu-

<table>
<thead>
<tr>
<th>Table 1. Detection of anti-CE antibodies in sera from slaughtered camels compared to live camels findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Naturally infected sera</td>
</tr>
<tr>
<td>Naturally non-infected sera</td>
</tr>
<tr>
<td>Random sera</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Comparison between protoscolex and germinal layer antigens for naturally infected sera (IS), non-infected sera (NIS) and random sera from camels (Chi-square test results)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IS vs NIS</td>
</tr>
<tr>
<td>IS vs random</td>
</tr>
<tr>
<td>NIS vs random</td>
</tr>
</tbody>
</table>
ated then statistically compared using a χ^2 test (Table 2). It is shown that the protoscolex antigen was the best antigen used for diagnosis of CE as the statistical analysis using Chi square test found that IS vs NIS, IS vs Random and NIS vs random differed significantly ($P<0.05$), while the germinal layer antigen IS vs NIS showed no significant difference.

The results of cross reactivity of protoscolex and germinal layer antigens with different hyperimmune of CE, Fasciola spp and Haemonchus contortus showed that the immunogenic potency of each
Studies on the specific immunodiagnosis of cystic echinococcosis in camels using enzyme-linked ...
However, many serological methods including ELISA, were used for the diagnosis due to advantages in aspect of the collection, storage and transportation (Zhang et al., 2012).

The sensitivity for the protoscolex was 83% as compared to 46.5% for germinal layer according to the visual inspection of liver and lungs; on the other hand a negative result was obtained in slaughtered camels judged visually to be not infected with hydatidosis. The specificity of the ELISA was not as high 70.3% and 41.7% for the protoscolex and germinal layer antigens respectively. The obtained false positive results might be secondary to cross reactions with other parasitic infections. Many factors affect IgG production, like cyst number, size, location, and stage (Moro & Schantz, 2009). Moreover, serological techniques’ sensitivity is inversely related to the degree of sequestration of the echinococcal antigens inside cysts (Nunnari et al., 2012). Moreover, Ibrahem & Criag (1998) showed that antigen B purified from hydatid cyst fluid was highly specific (99%) and sensitive (90%) when used in ELISA to test sera collected from sheep naturally infected with CE. Thus ELISA may be considered a highly sensitive and specific tool for CE diagnosis.

So, the present study concluded that the protoscolex antigen from camel hydatid cyst is a promising antigen for serological diagnosis and screening of CE in camels.

ACKNOWLEDGEMENTS

This work was financially supported by co-project between Egypt and Morocco entitled “Impact of agricultural wastewaters reuse on human and animals parasites; Diagnosis, cycle and epidemiology of hydatidosis” and funded from Ministry of Scientific Research in Egypt.

REFERENCES

Beyhan, Y. E. & S. I. Umur, 2011. Molecular characterization and prevalence of cystic echinococcosis in slaughtered water buffa-
Studies on the specific immunodiagnosis of cystic echinococcosis in camels using enzyme-linked ...

Nunnari, G., M. P. Pinzone, S. Gruttadauria, B. M. Celesia, G. Madeddu, G. Malaguar-
O. M. Kandil, N. M. F. Hassan, D. Sedky & E. Beshir Ata

Paper received 02.01.2018; accepted for publication 16.03.2018

Correspondence:

Omnia M. Kandil
Department of Parasitology and Animal Diseases, National Research Centre, El-Bohouth Street, Dokki, P.O. Box 12622, Cairo, Egypt
tel: +01005414113,
e-mail:kandil_om@yahoo.com