SEQUENCING AND PHYLOGENETIC ANALYSIS OF INFECTIOUS BOVINE RHINOTRACHEITIS VIRUS GB AND GD GENES IN IRAN

H. MOMTAZ
Department of Microbiology, Faculty of Veterinary Medicine, Islamic Azad University of Shahrekord branch, Shahrekord, Iran

Summary

Bovine herpesvirus 1 (BHV-1) belongs to the Varicellovirus genus, Herpesviridae family and causes different respiratory, reproductive and nervous system disorders in cows, including infectious bovine rhinotracheitis (IBR). For determination of the genetic relationship of gB and gD – two of main BHV-1 glycoprotein genes in Iran with those in other countries, DNA fragments of 671 bp corresponding to gB and 1002 bp corresponding to gD from four IBR viral strains have been isolated from bovine respiratory disorders in Iran, then were amplified in PCR system, sequenced for determining nucleotide sequence and compared with identified nucleotide sequences of these genes in other countries. The results indicated 6.6% to 14.5% variability in gB gene and 1.1% to 13.3% variability in gD gene in four sequenced samples. A comparison made on gB and gD genes in Iran with other countries showed 6.4% to 59% variability in gB gene and 8.7% to 29.2% variability in gD gene.

Key words: bovine herpesvirus 1, gB and gD genes, Iran, phylogenetic relationship

INTRODUCTION
Bovine herpesvirus type 1 (BHV-1), the cause of infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV), is a member of the family Herpesviridae, subfamily Alphaherpesvirinae and is associated with a number of different clinical syndromes in cattle (Roizman et al., 1992; Tikoo et al., 1995; D’Arce et al., 2002; Meuren et al., 2004; Toussaint et al., 2005; Muyldemes et al., 2006).

All herpesviruses encode a large number of proteins involved in nucleic acid metabolism, DNA synthesis and protein processing (Roizman & Pellett, 2002; Keil et al., 2005). At least 33 of the BHV-1 encoded proteins are structural proteins (Misra et al., 1981). Of these, 13 are probably associated with the envelope and 10 have the potential to encode glycoproteins (Liang et al., 1996; Schwyzer & Ackermann, 1996). There are 8 known glycoproteins: gB, gC, gD, gE, gH, gI, gK and gL; the major envelope glycoproteins being gB, gC and gD. The gC, gD, gE, gG, gI, UL49h and thymidine kinase genes are involved in viral virulence and are useful targets for diagnosis, prevention or antiviral treatment (Smith et al., 1994; van Engelenburg et al., 1994; Young & Smith, 1995; Schwyzer & Ackermann, 1996; van Oirschot et al., 1996; Liang et al., 1997; Kaashoek et al., 1998).

In the present study, partial sequences of the BHV-1 gB and gD genes obtained from four IBR viral strains isolated in
Sequencing and phylogenetic analysis of infectious bovine rhinotracheitis virus gB and gD genes... different regions of Iran were compared with other BHV-1 gB and gD gene sequences of strains isolated in other countries and registered in GenBank.

MATERIALS AND METHODS

Viruses

Four IBR viral strains isolated in different regions of Iran were propagated in Madin-Darby Bovine Kidney (MDBK) cells grown in Eagle’s minimum essential medium (MEM; Invitrogen) supplemented with 10% fetal calf serum (FCS; Invitrogen).

Polymerase chain reaction

Viral DNA were purified from IBR-infected MDBK cells using DNA isolation kit for cell and tissues (Roche Applied Science).

Primers for PCR amplification of the genes coding for gB and gD glycoproteins were designed from the published sequence of BHV-1 gB and gD genes in GenBank (Table 1).

The amplification reactions were performed in 50 µL reaction mixtures containing 0.1 mM of each deoxynucleotide, 15 pmoL of each primer, 50 mM KCl, 10 mM Tris-HCl (pH=9), 2 mM MgCl₂, 10% dimethyl sulfoxide (DMSO, Sigma), 1.5 U of Taq DNA polymerase (Sigma) and 40 ng of template DNA. The PCR reaction was carried out in a PCR programmed thermocycler (Eppendorf, Mastercycler 5330, Eppendorf-Nethel-Hinz GmbH, Germany) using the thermal profiles: initial cycle 94 °C for 9 min, followed by further 35 cycles: denaturation at 95 °C for 60 s; annealing at 58–61 °C for 60 s, depending on the melting temperature of the primers used and considering previous amplification results, and extension by polymerase at 72 °C for 60 s. The final cycle was run at 72 °C for 7 min (Ros & Belak, 1999). PCR products were purified with High pure PCR product purification kit (Roche Applied Science) according to manufacturer’s recommendations. Single DNA strands were sequenced with ABI 3730 XL device and Sanger sequencing method (Macrogen, Korea) (Sambrook & Russell, 2001).

Sequence analysis

The nucleotide sequences were edited using Edit View v.1.0.1 (Applied Bioscience, Australia). The 14 sequences registered in GenBank (accession numbers AY758382.1; EF175730.1; M21474.1; AF078724.1; DQ006857.1; AF078725.1; EF624475.1; DQ006854.1; AY755875.1; AJ004701.1 for gB and AF078730.1; M59846.1; AY690484.1; AF078731.1 for gD gene) were aligned separately using the Clustal W v1.81 in order to obtain a consensus sequence. Subsequently, the sequences were analysed using the BioEdit package v.7.0.4.1 to compare the nucleotide sequences.

The four nucleotide sequences of the Iranian IBR gB and gD genes were com-

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size of product (bp)</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBR-gB-F</td>
<td>5'-GTACACG TTCAAGGCTACA-3'</td>
<td>671</td>
<td>DQ006853.1</td>
</tr>
<tr>
<td>IBR-gB-R</td>
<td>5'-TCGTCTCGACATTTTC-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBR-gD-F</td>
<td>5'-GGGTTAGCTTCCTACA-3'</td>
<td>1002</td>
<td>AY690484.1</td>
</tr>
<tr>
<td>IBR-gD-R</td>
<td>5'-GGGCTGTGAGGTGGCTACAG-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Sequence identity matrix of partial gB gene of Iranian IBV virus isolates in comparison with 10 known reference sequences

<table>
<thead>
<tr>
<th>Seq gB IBR</th>
<th>Iran 2</th>
<th>Ref 1</th>
<th>Ref 2</th>
<th>Ref 3</th>
<th>Ref 4</th>
<th>Ref 5</th>
<th>Iran 4</th>
<th>Ref 6</th>
<th>Iran 3</th>
<th>Ref 7</th>
<th>Ref 8</th>
<th>Ref 9</th>
<th>Iran 1</th>
<th>Ref 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iran 2</td>
<td></td>
<td>0.933</td>
<td>0.936</td>
<td>0.936</td>
<td>0.936</td>
<td>0.936</td>
<td>0.872</td>
<td>0.749</td>
<td>0.934</td>
<td>0.926</td>
<td>0.926</td>
<td>0.916</td>
<td>0.878</td>
<td>0.41</td>
</tr>
<tr>
<td>Ref 1</td>
<td>0.933</td>
<td></td>
<td>0.996</td>
<td>0.996</td>
<td>0.996</td>
<td>0.996</td>
<td>0.917</td>
<td>0.803</td>
<td>0.902</td>
<td>0.983</td>
<td>0.983</td>
<td>0.972</td>
<td>0.916</td>
<td>0.434</td>
</tr>
<tr>
<td>Ref 2</td>
<td>0.936</td>
<td>0.996</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.921</td>
<td>0.800</td>
<td>0.905</td>
<td>0.987</td>
<td>0.987</td>
<td>0.976</td>
<td>0.919</td>
<td>0.438</td>
</tr>
<tr>
<td>Ref 3</td>
<td>0.936</td>
<td>0.996</td>
<td>1.000</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>0.921</td>
<td>0.800</td>
<td>0.905</td>
<td>0.987</td>
<td>0.987</td>
<td>0.976</td>
<td>0.919</td>
<td>0.438</td>
</tr>
<tr>
<td>Ref 4</td>
<td>0.936</td>
<td>0.996</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td>1.000</td>
<td>0.921</td>
<td>0.800</td>
<td>0.905</td>
<td>0.987</td>
<td>0.987</td>
<td>0.976</td>
<td>0.919</td>
<td>0.438</td>
</tr>
<tr>
<td>Ref 5</td>
<td>0.936</td>
<td>0.996</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td>0.921</td>
<td>0.800</td>
<td>0.905</td>
<td>0.987</td>
<td>0.987</td>
<td>0.976</td>
<td>0.919</td>
<td>0.438</td>
</tr>
<tr>
<td>Iran 4</td>
<td>0.872</td>
<td>0.917</td>
<td>0.921</td>
<td>0.921</td>
<td>0.921</td>
<td>0.921</td>
<td></td>
<td>0.769</td>
<td>0.924</td>
<td>0.917</td>
<td>0.917</td>
<td>0.907</td>
<td>0.864</td>
<td>0.421</td>
</tr>
<tr>
<td>Ref 6</td>
<td>0.749</td>
<td>0.803</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.769</td>
<td></td>
<td>0.723</td>
<td>0.797</td>
<td>0.797</td>
<td>0.786</td>
<td>0.757</td>
<td>0.436</td>
</tr>
<tr>
<td>Iran 3</td>
<td>0.934</td>
<td>0.902</td>
<td>0.905</td>
<td>0.905</td>
<td>0.905</td>
<td>0.905</td>
<td>0.924</td>
<td>0.723</td>
<td></td>
<td>0.902</td>
<td>0.902</td>
<td>0.892</td>
<td>0.855</td>
<td>0.399</td>
</tr>
<tr>
<td>Ref 7</td>
<td>0.926</td>
<td>0.983</td>
<td>0.987</td>
<td>0.987</td>
<td>0.987</td>
<td>0.987</td>
<td>0.917</td>
<td>0.797</td>
<td>0.902</td>
<td></td>
<td>1.000</td>
<td>0.989</td>
<td>0.917</td>
<td>0.438</td>
</tr>
<tr>
<td>Ref 8</td>
<td>0.926</td>
<td>0.983</td>
<td>0.987</td>
<td>0.987</td>
<td>0.987</td>
<td>0.987</td>
<td>0.917</td>
<td>0.797</td>
<td>0.902</td>
<td>1.000</td>
<td></td>
<td>0.989</td>
<td>0.917</td>
<td>0.438</td>
</tr>
<tr>
<td>Ref 9</td>
<td>0.916</td>
<td>0.972</td>
<td>0.976</td>
<td>0.976</td>
<td>0.976</td>
<td>0.976</td>
<td>0.907</td>
<td>0.786</td>
<td>0.892</td>
<td>0.989</td>
<td>0.989</td>
<td></td>
<td>0.907</td>
<td>0.434</td>
</tr>
<tr>
<td>Iran 1</td>
<td>0.877</td>
<td>0.916</td>
<td>0.919</td>
<td>0.919</td>
<td>0.919</td>
<td>0.919</td>
<td>0.864</td>
<td>0.757</td>
<td>0.855</td>
<td>0.917</td>
<td>0.917</td>
<td>0.907</td>
<td></td>
<td>0.430</td>
</tr>
<tr>
<td>Ref 10</td>
<td>0.41</td>
<td>0.434</td>
<td>0.438</td>
<td>0.438</td>
<td>0.438</td>
<td>0.438</td>
<td>0.421</td>
<td>0.436</td>
<td>0.438</td>
<td>0.438</td>
<td>0.438</td>
<td>0.438</td>
<td>0.438</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Ref 1=AF078724.1-Sweden; Ref 2=M21474.1-Philadelphia; Ref 3=DQ006857.1-Brazil; Ref 4=AY745875.1-Brazil; Ref 5=AJ004701.1-Switzerland; Ref 6=EF624475.1-Belgium; Ref 7=DQ006854.1-Brazil; Ref 8=AF078725.1-Sweden; Ref 9=AY758382.1-Brazil; Ref 10=EF175730.1-India.
Sequencing and phylogenetic analysis of infectious bovine rhinotracheitis virus gB and gD genes... compared with the corresponding sequences from other regions of the world. Unrooted dendrograms were constructed using the Njplot software. Statistical support for dendrograms was obtained by bootstrapping using 1000 replicates.

RESULTS

The nucleotide sequences of the 630 bp fragments of the IBR gB gene and the 785 bp fragments of the IBR gD gene from Iranian isolates were compared with the sequences of the gB and gD genes from the known reference sequences obtained from the GenBank nucleotide sequence database (10 sequences corresponding to gB and 4 sequences corresponding to gD). The nucleotide sequences had a variability of 6.4–59% for gB gene (Table 2) and 8.7–29.2% for gD gene (Table 3) and variations consisted only in nucleotide substitution. Frameshift, deletion, insertion and nonsense mutations were not observed.

A comparison made on the sequences of gB and gD between Iran and other countries showed 6.4–59% variability in gB and 8.7–29.2% variability in gD. The greatest sequence similarity exists between Iranian gB sequence and M21474.1-Philadelphia, DQ006857.1-Brazil and AY745875.1-Brazil with a sequence similarity of 93.6% and the least relationship – between Iranian gB sequence and EF175730.1-India with a similarity of 41%. In case of gD gene, the greatest sequence similarity is also determined between the sequences of this gene in Iran with AY690484.1-Egypt with a similarity of 91.3% and the least – with AF078730.1-Sweden with a similarity of 70.8%.

Classification of Iranian IBR virus isolates using sequence alignment analysis and construction of the phylogenetic tree of gB and gD genes revealed that they fell into two closely related clusters that had 6.6–14.5% variability for gB gene and 1.1–13.3% variability for the gD gene (Fig. 1 and 2).

DISCUSSION

Among BHV-1 structure genes, those coding for glycoproteins gB, gC and gD are considered as major and relatively protected genes. Today, most molecular

Table 3. Sequence identity matrix of partial gD gene of Iranian IBR virus isolates in comparison with 4 known reference sequences

<table>
<thead>
<tr>
<th>Seq gD IBR</th>
<th>Iran 1</th>
<th>Iran 4</th>
<th>Ref 1</th>
<th>Ref 2</th>
<th>Iran 2</th>
<th>Iran 3</th>
<th>Ref 3</th>
<th>Ref 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iran 1</td>
<td>1.000</td>
<td>0.975</td>
<td>0.723</td>
<td>0.716</td>
<td>0.885</td>
<td>0.875</td>
<td>0.878</td>
<td>0.868</td>
</tr>
<tr>
<td>Iran 4</td>
<td>0.975</td>
<td>1.000</td>
<td>0.741</td>
<td>0.733</td>
<td>0.876</td>
<td>0.867</td>
<td>0.898</td>
<td>0.882</td>
</tr>
<tr>
<td>Ref 1</td>
<td>0.723</td>
<td>0.741</td>
<td>1.000</td>
<td>0.988</td>
<td>0.715</td>
<td>0.708</td>
<td>0.733</td>
<td>0.717</td>
</tr>
<tr>
<td>Ref 2</td>
<td>0.716</td>
<td>0.733</td>
<td>0.988</td>
<td>1.000</td>
<td>0.717</td>
<td>0.709</td>
<td>0.726</td>
<td>0.71</td>
</tr>
<tr>
<td>Iran 2</td>
<td>0.885</td>
<td>0.876</td>
<td>0.715</td>
<td>0.717</td>
<td>1.000</td>
<td>0.989</td>
<td>0.913</td>
<td>0.895</td>
</tr>
<tr>
<td>Iran 3</td>
<td>0.875</td>
<td>0.867</td>
<td>0.708</td>
<td>0.709</td>
<td>0.989</td>
<td>1.000</td>
<td>0.903</td>
<td>0.886</td>
</tr>
<tr>
<td>Ref 3</td>
<td>0.878</td>
<td>0.898</td>
<td>0.733</td>
<td>0.726</td>
<td>0.913</td>
<td>0.903</td>
<td>1.000</td>
<td>0.946</td>
</tr>
<tr>
<td>Ref 4</td>
<td>0.868</td>
<td>0.882</td>
<td>0.717</td>
<td>0.710</td>
<td>0.895</td>
<td>0.886</td>
<td>0.946</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Legend: Ref 1= AF078730.1-Sweden; Ref 2= AF078731.1-Sweden; Ref 3= AY690484.1-Egypt; Ref 4= M59846.1-Canada.
biological diagnostic methods are based on detection of these genes (Yan et al., 2008). The gB gene plays a main role in BHV-1 penetration into a host cell and it is the major viral antigen inducing a protective immune response in naturally infected hosts. The gB antibodies are extensively used in most diagnostic serum tests for BHV-1 infections with despite the potential cross reaction with other herpesviruses (Gao et al., 1994; Kramps et al., 1994; McGeoch & Cook, 1994; Ros & Belak, 1999; 2002).

On the other hand, gB, gC and gD genes play main roles in genetic studies for determination of the phylogenetic relationship among different herpesviruses and today, nucleotide sequences of these genes have been identified in many herpes viruses.

In the study of Ros & Belak (1999), conducted to determine the genetic relationship among different alpha herpesviruses, a relationship of 87.2% to 99.6% was observed between nucleotide sequence of gB in five alpha herpesviruses: BHV-1, BHV-5, caprine herpesvirus 1 (CapHV-1), cervine herpesvirus 1 (CerHV-1) and ran-giferine herpesvirus 1 (RanHV-1) while the phylogenetic relationship of gD gene in these viruses appeared to be equivalent to 71.3% to 98.9%.

In another study (Ros & Belak, 2002), aimed at detection of genetic relationship of the gB gene in ruminant alpha herpesviruses, it was reported that the greatest relationship of gB gene exists in BHV-1 with BHV-5 and buffalo herpesvirus 1 (BuHV-1) with a sequence similarity of 91.9% and the least relationship is between BHV-1 and CapHV-1 with a relationship of 77.3%.

The present study was conducted for the first time in Iran to detect gB and gD genes in IBR viral strains isolated from bovine respiratory infections to determine nucleotide sequences of these genes and to compare obtained sequences with those from other countries. In this research, the
fragments 671 bp (corresponding to gB) and 1002 bp (corresponding to gD) isolated from four IBR viral strains in Iran were amplified and sequenced in PCR system.

The presence of high genetic variability of IBR virus in Iran with other countries may be associated with the transmission of cattle as well as biological products. The main origin of the IBR virus is the region of Colorado in America and it was spread from America to other countries. As the first isolation of the IBR virus in Iran was performed from cows and biological materials mostly imported from European and American countries, it seems that the IBR virus encountered in Iran is of the same origin and has been involved in highly genetic variability during the time of its adaptation to Iranian bovine strains. For the same reason, most determined sequences of gB and gD genes of this virus in Iran have been arranged in a separate phyllum in the phylogenetic tree. This view could be more definitely supported with evidence from determination of the complete nucleotide sequence of this virus in Iran and its comparison to that of other countries.

ACKNOWLEDGEMENTS

We thank Dr. A. Sharifzadeh, Dr. S. Nekoie, Dr. M Rohani, Dr. S. Nejat for their cooperation. This study was funded by the Islamic Azad University of Shahr-e-kord.

REFERENCES

Paper received 26.01.2009; accepted for publication 11.09.2009

Correspondence:

Dr. Hassan Momtaz
Department of Microbiology, Faculty of Veterinary Medicine, Islamic Azad University of Shahrekord branch, P.O.Box 166, Shahrekord-Iran, Tel/fax: 0098 381 3361083, e-mail: hamomtaz@yahoo.com