Original article

MOLECULAR CHARACTERISATION AND HISTOPATHOLOGICAL STUDY OF EUSTRONGYLIDES EXCISUS NEMATODE IN THE NORTHERN PIKE (ESOX LUCIUS)

M. R. YOUSSEFI¹, R. TABARIPOUR² & M. HOSSEINI³

¹Department of Veterinary Parasitology, Babol Branch, Islamic Azad University, Babol, Iran; ²Department of Cellular and Molecular Biology, Babol Branch, Islamic Azad University, Babol, Iran; ³Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran

Summary

Eustrongylides excisus is a parasitic nematode species whose life cycle requires two intermediate hosts, an aquatic oligochaete and a benthophagous fish. In the present study, 100 specimens of Esox lucius Linnaeus weighing 550–800 g were collected from Freidoonkenar, south of the Caspian Sea (Mazandaran province, Iran) and were examined for the presence of Eustrongylides. The bright red nematode larvae were found in the testes and encapsulated in the body musculature of 90% of E. lucius fish. The larvae were diagnosed as Eustrongylides excisus. Tissue samples were collected from the muscles and testes for histopathological examination of the lesions caused by the parasitic larvae. For molecular analysis, the nematode larvae genomic DNA was extracted and molecular characterisation of Eustrongylides and comparison with the corresponding sequences available in the GenBank was done. The histopathological damages caused by parasites in the muscle included external nodules, inflammation, necrosis, and granulomas. Granulomas containing multi-nucleated giant cells, epithelioid cells, lymphoid cells, macrophages and necrotic debris were observed. Microscopic examination of the testes revealed mild vacuolar degeneration in some Sertoli cells. Molecular analysis confirmed obtained larvae as E. excisus. Comparison of DNA sequences showed that isolated nematodes were very similar to those obtained from freshwater fish in China. The present study reported Eustrongylides nematodes in Esox lucius, and inflammatory lesions caused by E. excisus larvae in the muscle and testis of this species of fish for the first time. In addition, molecular characterization and phylogenetic analysis of recovered larvae showed presence of microvariants.

Key words: Caspian Sea, Esox lucius, Eustrongylides excisus, pathologic lesions

INTRODUCTION

Eustrongylids are parasitic nematodes commonly long, coiled, and red in colour due to the presence of haemoglobin. Infected fish generally have several nematodes mostly in the body cavity. The nematodes can migrate out of the infected
Molecular characterisation and histo-pathological study of Eustrongylides excisus nematode in ...
ing to the manufacturer’s instructions and stored at −20 °C until further use. The sequence of rDNA ITS (18s ribosomal RNA gene, partial sequence, Internal transcribed spacer1, 5.8 ribosomal RNA gene and Internal transcribed spacer2, complete sequence, and 28s ribosomal RNA gene, partial sequence) was amplified using forward (TTGGATGATTCGGTGAG) and reverse (AACCGCTTAGTAATATGCT) primers. PCR reaction was performed in a total volume of 50 µL containing approximately 250 µM dNTPs, 2 mM MgCl₂, 200 nM of each forward and reverse primers and 1.5 unit taq DNA polymerase. The amplification program in thermocycle included initial denaturation at 94 °C for 5 minutes followed by 35 cycles of 94 °C for one minute, 58 °C for 45 seconds, 72 °C for 90 seconds and then a final extension phase at 72 °C for 10 minutes. The PCR amplification products were detected after electrophoresis on 1.5% agarose LE gel under UV transilluminator and then PCR amplicons were analysed by direct sequencing (ABI-genetic Analyzer 3730, macrogen Big-Dye). The sequence of PCR products was compared to those registered in Genbank using the Basic Local Alignment Search Tool (BLAST). The nucleotide sequence was aligned with other Eustrongylides sequences using the ClustalW method, Mega5 programme. Phylogenetic analysis was performed using the maximum likelihood statistical method (Mega5). Pairwise distances were corrected by the Kimura two-parameter model. For visualisation, Pellioditis marina (AJ867071) was defined as an out group to root the tree.

RESULTS

Our study revealed presence of larval stage of Eustrongylides nematodes in the muscular tissue and testes of 90% of examined Linnaeus fish. The number of larvae per fish ranged from 4 to 21 in every individual Esox lucius. Body length of larvae ranged from 21 to 30 mm, while the maximum width was 0.1 mm; buccal cavity was 0.09 mm, and the oesophagus measured 2.5–3 mm.

Results of histopathological evaluation of muscles in presence of E. excisus are presented on Fig. 1 and 2. Encapsulated cystic parasitic granulomas were present in the muscle tissues. In addition, there were multi-nucleated giant cells, epithelioid cells, and mononuclear inflammatory cells (lymphocyte and macrophage) around granulomas and between the muscle fibres. Hyalination and muscle fibre necrosis with infiltration of inflammatory cells into the necrotic area were also observed in the samples.

In the testicular tissue of E. lucius fish, different stages of spermatogenesis could be seen (Fig. 3). E. excisus caused pressure atrophy and mild necrosis in the testes’ tissue. Histopathological changes including disorganisation and distortion of the seminiferous tubules were observed. Degenerative and destructive signs were also detected both in spermatogenetic lineage and in Sertoli cells. Exfoliated germ cells and multinucleated giant cells accumulated in the lumen of the tubules caused by E. excisus were observed in samples (Fig. 3).

For the molecular study, genomic DNA was extracted, and the rDNA ITS gene was amplified. The PCR product showed an expected fragment of nearly 1100 bp in length (Fig. 4).

BLAST analysis of PCR product sequences confirmed the presence of Eustrongylides parasitic nematodes. Multiple alignment and comparison of rDNA ITS sequence of isolated samples with other
Molecular characterisation and histo-pathological study of Eustrongyliodes excisus nematode in …

Fig. 1. Muscle tissue. A. Normal muscle; B. E. excisus encapsulated in the muscles; C. Inflammatory cells infiltration (arrows); D. Cross-section of E. excisus coelomyanian musculature, intestine, spicule in sheath and nerve cord. H&E, bar=50 μm.

Fig. 2. Muscle tissue. A. Normal muscle; B. Hyalinisation and necrosis in muscle; C. Infiltration of lymphocytes (arrow); D. Infiltration of macrophages (1), giant cells (2) and epithelioid cells (3). H&E, bar=50 μm.
Eustrongulides sequences registered in Genbank showed high identity indicating variations among these sequences.

The phylogenetic relationship between the isolated Eustrongylides sequence that was registered in Genbank under accession number KU963206 for rDNA ITS and the other most identical sequences are shown on Fig. 5.

DISCUSSION

In aquaculture systems, E. excisus larvae are highly pathogenic for fish and cause illness or even death (Bjelić-Čabrilo et al., 2013). Eustrongylides species can be found in the body cavity, muscle, testes, or on the external surface of internal organs such as the liver and intestinal tract.
of fish, and in highly infected fish may result in bloating of the hosts abdomen (Spalding et al., 1993). In the present study, *E. excisus* nematodes were found in muscle and testes of *Esox lucius*. Detection and identification of *E. excisus* in *E. lucius* fish in the present study is important due to histopathological lesions caused notably in the testes which may lead to decrease in fertility or even sterility, and imposes economic losses. Eustrongylid nematodes can affect various species; some aquatic birds (*Pelecanus* sp., *Phalacrocorax carbo, P. pigmeus*) are definitive hosts, and amphibians (*Rana ridibunda*), reptiles (*Natrix tessellate*), oligochaetes (*Lumbricus variegatus, Tubifex tubifex, Limnodrilus* sp.) and various fish are known to be paratenic hosts of this parasite (Spalding et al., 1993). *E. excisus* has been reported in various freshwater fish in Iran (Pazooki & Masoumian, 2012), Japan (Abe, 2011), Papua New Guinea (Owen, 2005), Serbia (Bjelić-Čabrilo et al., 2013), Bangladesh (Chandra, 2006), Slovakia (Novakov et al., 2013) and Turkey (Rolbiecki, 2006). In Iran, the parasite was reported in *Acipenseridae, Cyprinidae, Percidae, Esocidae* and, some *Neogobiidae* fishes, and in *Rutilus frisiikutum* (Sattari et al., 2008). In the present study, *E. excisus* was found in *Esox lucius* Linnaeus obtained from Freidoonkenar, south of the Caspian Sea (Mazandaran province, Iran). To our knowledge, our study is the first report of the presence of *Eustrongylides* in *E. lucius* fish.

It has been reported that *E. excisus* larvae bring about heavy damage to tissues in acipenserids. In young fishes, in the sites of the localisation of larvae, large scars appeared, inflammatory lesions were sometimes found, and complete destruction of the kidney often occurred (Bjelić-Čabrilo et al., 2013). In the present study,
even though no lesions in the kidney were found out, *E. excius* caused external nodules, inflammation, and granulomatous necrosis in the muscle. In addition, spermatooza clumping, necrosis, and vacuolar degeneration in some Sertoli cells were observed in the testis tissue.

Up to now, limited sequence data have been available on the genetic information of the fish parasitic *Eustrongylides* nematodes. The present study is the first sequence-based comprehensive molecular study and strain characterisation of *Eustrongylides* nematode in Iran. Comparison of sequences showed that Iranian isolated nematodes were very similar to those from freshwater fish in China (Xiong et al., 2013), suggesting that the origin of this parasites may be the same. Few variations between the sequence isolated from Iran and other sequences showed a probability of microvariants in *Eustrongylides* nematodes similarly to other parasites.

Overall, the present study reported *Eustrongylides* nematodes in *Esox lucius* for the first time. In addition, inflammatory lesions caused by *E. excius* larvae in the muscle and testis of this fish species have been demonstrated. Molecular characterisation and phylogenetic analysis of *E. excius* was performed, showing presence of microvariants in the recovered larvae.

ACKNOWLEDGEMENTS

This study was funded by Babol branch Islamic Azad University under Grant No. 1396-755. The authors would like to express their gratitude to Rick Wilkison, Senior Fisheries Biologist, Idaho Power Company, Environmental Affairs Department, Fisheries Section, for assistance with editing, and his insightful comments.

REFERENCES

Molecular characterisation and histo-pathological study of Eustrongylides excisus nematode in …

Correspondence:

Mohammad Reza Youssefi
Department of Veterinary Parasitology, Babol Branch, Islamic Azad University, Babol, Iran
phone No: +9811324115159
e-mail: youssefi929@hotmail.com,
ORCID: 0000-0002-8606-2266

Paper received 22.09.2020; accepted for publication 06.11.2020