Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the Journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscript written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are need to confirm their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or can be downloaded from the website of the journal. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

Subscriptions
Agricultural Science and Technology is published four times a year. The subscription price for institutions is 80 € and for personal subscription 30 € which include electronic access and delivery. Subscription run for full calendar year. Orders, which must be accompanied by payment may be sent direct to the publisher:
Trakia University
Faculty of Agriculture, Bank account: UniCredit Bulbank,
Sofia BIC: UNCRBGSF
IBAN: BG29UNCR76303100117681
With UniCredit Bulbank Stara Zagora

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Copyright
All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying or any information storage and retrieval system without permission in writing from the publisher.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tzvetanova
Telephone: +359 42 699446
E-mail: ascitech@uni-sz.bg
PRODUCTION OF FRESH
SAUSAGES AND OTHER MEAT PRODUCTS

KEN LTD
6000 Stara Zagora
www.ken.bg

for contacts:
+359 42 64 11 28
60 24 92

fax: +359 42 60 11 46
Effectiveness of the insecticide “Mido 20 SL” in the fight with the green rose aphid populations (Macrosiphum Rosae L)

H. Lambev*

Institute of roses and aromatic plants, 49 Osvobozhdenie, 6100 Kazanlak, Bulgaria

Abstract. The study was carried out in the period 2008 – 2009 in the Institute of roses and aromatic plants – Kazanlak. The preparation was used against Macrosiphum rosae L. in a plantation with Rosa damascena Mill. at a dose of 500 ml/ha. Observations were made in the following continuity: preliminary treatment, on the 3rd, 7th and 14th day. The effectiveness of the insecticide “Mido 20 SL” was calculated according to the formula of Henderson and Tilton – in the range between 99.80 – 94.50 % for the period. “Mido 20 SL” is effective against Macrosiphum rosae L., but it has a toxic effect on useful insects in the plantation.

Keywords: rose aphid, insecticide, effectiveness

Introduction

The green rose aphid (Macrosiphum rosae L.) is one of the major pests on oil-bearing roses, decorative roses, and briars. It is spread throughout the rose production regions and is one of the most common and most dangerous enemies of one- and two-year-old sprouts of the Kazanlak rose (Margina et al., 1999). The body is green and shiny brown, up to 3.5 mm in length, with a sword-shaped stylet at the back end, and long black sap pipes (Harizanov and Harizanova, 1998). It winters as an egg on the stalk of a one- or two-year-old sprouts, around the prickles, the dormant buds, and in the cracks on the bark (Nikolova, 1969; Margina et al., 1999). The hatching of the larvae starts in spring, usually in April, when temperatures in the field reach an average of 10°C within 10 days. After hatching the larvae start sucking the sap of the growing buds, and at the end of April or the beginning of May the founding females appear on the young sprouts. They give birth to larvae and found colonies on the top parts of the shoots, the blossom stem and buds, from which they suck the sap. The colonies on the leaves prevail in June and July, on the tops of young sprouts – in June-July, and July-August, on the buds – in May and June (Nikolova, 1969). In intense reproduction their density reaches 250 per every 10 cm of the sprouts. The degree of attack varies from weak in April, average in May, to intense in June and July. Depending on the climatic conditions the rose green aphid develops from 6 to 7 generations a year, and in August through mid September a depression in the population density occurs. In suitable conditions (without severe droughts or extreme temperatures) the development can continue without a clear-cut depression throughout the whole vegetation period (Margina et al., 1999). Macrosiphum rosae is commercially harmful to young 1-2-year-old plantations, mainly in June and July, when the clusters of colonies on young sprouts start stunting the shrub development.

Material and methods

The experiment was carried out with a flowering rose plantation of Rosa damascena Mill. “Improved population № 5”, on an area of 150 m². The method used was the block linear method, with two variants in four replications. The area of a single lot was 15 m². The number of shrubs in a replication - 20. All the necessary agrotechnical activities were done in the experimental area without treating with other insecticides except for “Mido 20 SL” (imidacloprid 200 g/l).

The data readings in the experimental area were done in accordance with the plan of studies, i.e. immediately before the treatment, on the 3rd, 7th and 14th day after the treatment with “Mido 20 SL” while recording the number of living aphids in the treated areas and those of the untreated reference area. In each of the monitored lots 10 young sprouts with developed colonies on them were marked beforehand – mainly in the top parts and the periphery of the bushes in the middle of each of the experimental lots. The study was carried out in accordance with the requirements of Directives 181/3/152/3 / and 135/3 of European and Mediterranean Plant Protection Organization (EPPO), the Methodology of biological testing of the effectiveness of insecticides – Aphids on fruit-bearing trees, bushes and small-fruits crops, National Plant Protection Organisation 11/2(1), EPPO 1/21(2).

Results and discussion

In both years of the experiment the aphids appeared one by one as early as the beginning of April, and the first two colonies were

* e-mail: lambev_iemk@abv.bg
observed in the second decade of the month. Until that moment the pest attack in the experimental area was recorded to be below the threshold of harm for the pest (10-15% of affected sprouts). With the emergence of the winged migrant aphid at the end of April the spread of the pests increased significantly and at the beginning of May the attack reached 25% of the young sprouts, and highly dense colonies could be observed. The peak in the development of the pest was reached in the second decade of May and the beginning of June.

The environmental conditions were favourable for the development of the rose aphid. In April the density of the natural aphidophagi in the experimental area was relatively low which enabled the quick development of the colonies and their spread onto the surrounding sprouts. In April the main aphidophagi were the adult 7-spot ladybirds (Coccinela septempunctata), and with a smaller share was the two-spot ladybird (Adalia bipunctata). Some predator bedbugs occurred as well, but also at low density. The beginning of May saw the emergence of the ladybirds' larvae, as well as the syrphid flies and the chrysopidae, especially in the second decade of May. The highest density period for the aphidophagi coincided with the oil-bearing rose bloom, and the period immediately after it. The number of aphid colonies was significantly reduced on sprouts, where one could see the adults and larvae of aphidophagi.

The treatment of the different varieties in 2008-2009 was done in the bud formation phase at a rate of 500 l/ha. The maximum effect of the preparation was recorded till the 7th day after the treatment, and on the 14th day a new starting phase of aphid colony formation was observed. Till the 7th day separate flying migrant females were discovered which had come from neighbouring parts of the plantation. The average values for the readings for 2008 and 2009 are given in Table 1. The efficiency was evaluated on the basis of the data obtained from counting the number of living individuals on the marked sprouts, and the Henderson/Tilton formula was used in calculations. The average data for both years is given in Table 2.

During treatments no phytotoxic reactions were recorded on the leaves and other organs of the rose bushes. The experiment did not

<table>
<thead>
<tr>
<th>Table 1. A summary table for the living individuals of Macrosiphum rosae on the marked sprouts of the red oil-bearing rose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant protection preparation</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Number of reading</td>
</tr>
<tr>
<td>Mido 20 SL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Reference values</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Effectiveness of "Mido 20 SL" against Macrosiphum rosae L. on oil-bearing roses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mido 20 SL</td>
</tr>
<tr>
<td>Reference values</td>
</tr>
<tr>
<td>Mido 20 SL</td>
</tr>
<tr>
<td>Reference values</td>
</tr>
<tr>
<td>Mido 20 SL</td>
</tr>
<tr>
<td>Reference values</td>
</tr>
<tr>
<td>Mido 20 SL</td>
</tr>
<tr>
<td>Reference values</td>
</tr>
</tbody>
</table>
establish any unfavourable effect of the “Mido 20 SL” treatment on the development of oil-bearing roses. The blooming took place normally and no deformations or other signs of damage on the blossoms and on the vegetative parts of the plants were observed.

The monitoring of the marked and treated sprouts made it obvious that the preparation has an insecticide effect on the rose cicade on the oil-bearing rose. In laboratory conditions and a direct treatment it was found that there is a toxic effect on some larvae of the syrphid flies as well as ladybirds, and a strong toxicity against bees.

Conclusion

The preparation has high effectiveness against the green rose aphid on the oil-bearing rose, with the effect being the strongest before the 7th day after treatment – up to 99.8%. The aftereffect of the insecticide “Mido 20 SL” lasts for 10 days and it can successfully regulate the number of aphid colonies before the bloom of the oil-bearing rose. “Mido 20 SL” is toxic against rose cicades and other pests on roses, but is fairly to highly toxic for the predator entomophagi on roses and for bees. That is why, it is necessary appropriate measures to be taken for their preservation.

References

Nikolova V, 1969. Cenological studies on oil-bearing rose plantations. Sofia, BAS.

Sharonova MV, 1978. Harmful and beneficial enthomofauna in the essential oil plantations in Moldova. Hristo Danov, 269-312, Plovdiv (Bg).
A criterion of sufficient information is to be methods and conditions applied for the chemical analyses, statistical and other research, organization of experiments, the objects of research, hypothesis and goal? The introduction must answer the following questions: What is known and the hypothesis and goal? The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results. Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted. Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures should be to each in a single file and their location should be given within the text.

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.
CONTENTS

Genetics and Breeding
Influence of various cryoprotectants on the sperm mobility of Muscovy semen before and after cryopreservation
V. Gerzilov 57

Adaptive possibility and yield stability of varieties of oil-bearing roses
N. Kovatcheva, K. Rusanov, I. Atanasov 61

Nutrition and Physiology
Shelter policies in the management of canine aggression
A. Arnaudova, I. Varlyakov 64

Production Systems
Daily dynamics of the essential oils of Rosa damascena Mill. and Rosa alba L.
A. Dobreva, N. Kovacheva 71

Effectiveness of the insecticide “Mido 20 SL” in the fight with the green rose aphid populations (Macrosiphum Rosae L)
H. Lambev 75

Potassium fertilization on cotton
G. Panayotova, N. Valkova 78

Agriculture and Environment
Microbial communities in areas affected by formation of calcrete in the Thracian plane
S. Bratkova, K. Nikolova, K. Gesheva 84

An approach for Fusarium infected corn kernels recognition using linear discrete models
P. Daskalov, V. Mancheva, Ts. Draganova, R. Tsonev 90

Mechanism-based category formation of aldehydes for acute aquatic toxicity and mutagenicity
Y. Koleva 96

Quality and Safety
Gas-chromatography and organoleptic analysis of the essential oil of Agastache foeniculum (Pursh.) Kuntze
G. Zhekova, A. Dzhuranski, A. Dobreva 102

Comparative studies on the fatty acid composition of White brined cheese, marketed in the town of Stara Zagora
N. Naydenova, K. Davidova, T. Iliev, G. Mihaylova 105