Scope and policy of the journal

Agricultural Science and Technology/AST/ – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscript written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

Copyright

All rights reserved. No part of this publications may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying or any information storage and retrieval system without permission in writing from the publisher.

Address of Editorial office:

Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student’s campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
+359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:

Nely Tzvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
• АГРОФОРУМ - седмично ТВ предаване за модерно селскостопанство.
Обхват - 12 ТВ канала
Периодичност - седмично
Аудитория - 1,9 - 2,2 млн. зрители
Всяка седмица предаването започва своите зрители с новостите в агробизнеса, и
дава съвети как се прилагат най-новите земеделски практики.
► www.agroforum.bg

• ср. АГРОКОМПАС – най-голямото по обем и тираж списание за
селскостопанска информация в България.
Обем - 80 страници
Тираж - 17 000 броя
Периодичност - месечно
Във всеки брой полезна и актуална информация за възможностите за
финансиране по европейски и национални донорски програми.
► www.agrocompass.bg

• АГРОМАРКЕТ – Един ТВ продукт предлагаш на земеделските
стопани информация за начина на механизирано производство в
растениевъдството и животновъдството.
Предаването се изпълва 2 пъти дневно от понеделни до събота по
ТВ ЕВРОПА
► www.agromarket-tv.bg

• AGRO.BG – селскостопанският интернет портал на България.
Актуални статии, интервюта, новини, прояви, оферти и обяви.
Каталог с над 4000 фирми, актуална борсови информация и
агрокалендар. Агрокнижарница с над 1 000 заглавия от областта на
селското стопанство.
Всеки ден над 2500 интернет потребители търсят информация при
нас.
► www.agro.bg

1330 София, бл. Възкресение 1, тел. 02/ 920 20 63, 920 06 86, факс 02/ 822 13 17, E-mail: agroforum@agro.bg;
office@agrocompass.bg, office@agro.bg; www.agromedia.bg
Influence of some stimulators on the grain yield and sowing-seed properties of two durum wheat cultivars

G. Delchev*, D. Nenkova, D. Stoychev

1 Cotton and Durum Wheat Research Institute, 6200, Chirpan Bulgaria
2 Cryobiology and Food Technologies Institute, 65 Cherni vrah, 1407 Sofia, Bulgaria

Abstract. A two-factor experiment was carried out on pellic vertisol soil type in 2007-2009 on the experimental field of the Cotton and Durum Wheat Research Institute, Chirpan, Bulgaria. Factor A included 2 Bulgarian durum wheat cultivars - Vuzhod and Saturn, which belong to var. valenciae. Factor B included 6 rates – non-treated control and 3 stimulators: Tritimil - 300 ml/ha, Napsil - 300 and 500 ml/ha, Cemofol - 500 and 700 ml/ha. All stimulators were treated in the tillering stage of the durum wheat. Stimulators Tritimil, Napsil and Cemofol decreased less the 1st and 2nd overgrown internode length of cultivar Saturn compared with cultivar Vuzhod. Napsil and Cemofol increased grain yield by 9.0 % and 10.9 % in cultivar Vuzhod and by 10.3 % in cultivar Saturn. Both stimulators have equal or increased effectiveness compared with the standard Tritimil. The studied stimulators increased the vitreousness, protein content, wet and dry gluten contents. Stimulators Tritimil, Napsil and Cemofol increased germination energy and seed germination and decreased the waste grain quantity.

Keywords: durum wheat, stimulators, cultivars, grain yield, grain quality, sowing-seed properties

Introduction

Growth regulators properly selected and used of appropriate level of mineral fertilization, increase grain yield and grain quality in cases where traditional methods and tools are little effective or nearly exhausted their opportunities (Taniguchi et al., 1999; Vidflush and Gurban, 1999; Delchev, 2003). In literature, there is evidence that common and durum wheat respond differently to treatment with the same preparations (Rapparini et al., 1984; Pomati, 1987; Pestyakov et al., 1991). According to some authors (Jürgens and Knittel, 1985; Rapparini et al., 1987) in their reaction to some retardants durum wheat is closer to barley than to common wheat.

Based on these data, we set ourselves the aim to determine the influence of some stimulators on grain yield, grain quality and sowing-seeds properties of two durum wheat cultivars.

Material and methods

The investigation was conducted in the period 2007-2009 in the experimental field of the Cotton and Durum Wheat Research Institute - Chirpan on pellic vertisol soil type. A two-factor field experiment was carried out embedded in the block method in 4 replications with the 15 m² crop plot size. Factor A included 2 Bulgarian durum wheat cultivars - Vuzhod and Saturn, which belong to var. valenciae. Factor B included 6 rates – non-treated control and 3 stimulators: Tritimil (derived phytalamine acids, chlorofenoxy acids, quaternary ammonium salts) at a dose of 300 ml/ha, Napsil (derived chlorfenoxycetic acid, naphtalactetic acid, ph탈amine acid, chlorochrome chloride, folic acid, trace elements) in doses of 300 and 500 ml/ha, Cemofol (derived methilphthalatamine acid, chlorochrome chloride, folic acid, salicylic acid, trace elements, surface active substance) in doses of 500 and 700 ml/ha.

All stimulators were treated in tillering stage of the durum wheat with consumption of working solution 20l/ha. Mixing was done in a sprinkler tank. Early spring feeding was carried out with 120 kg N/ha, in the form of ammonium nitrate. All other cultivation practices are carried out according to accepted technology for cultivation of durum wheat.

The effect of foliar fertilizers on the grain yield of durum wheat has been studied. The changes occurring in the physical properties of the grain - 1000 grains weight, test weight, vitreousness - and biochemical properties of the grain - protein content, wet and dry gluten contents have been investigated. Received from each variant the same preparations (Rapparini et al., 1984; Pomati, 1987; Pestryakov et al., 1991). According to some authors (Jürgens and Knittel, 1985; Rapparini et al., 1987) in their reaction to some retardants durum wheat is closer to barley than to common wheat.

Results and discussion

Lodging of the crops of durum wheat may become a problem in its cultivation at higher farming practices. It is due to the discrepancy between the weight of the overgrown part of the plant and the size of the 1st and 2nd overgrown internodes that can withstand greater loads. Therefore, in assessing the effectiveness of stimulators, it is important to establish what its impact on those internodes is. Results obtained showed that the tested stimulators Tritimil, Napsil and Cemofol have small affect on the diameter of the 1st and 2nd overgrown internodes in both durum wheat cultivars (Table 1). Three stimulators give little influence on the length of these two internodes in cultivar Saturn. But Saturn is a very low cultivar and the lodging risk is minimum. In the variety Vuzhod reduction of internode length is significantly greater. The greatest reduction in the length is obtained at the 2nd internode of cultivar Vuzhod. This is an important feature of the three stimulators because Vuzhod is higher and the
Table 2. Physical and biochemical properties of the grain (mean 2007-2009)

<table>
<thead>
<tr>
<th>Variants</th>
<th>Stimulators</th>
<th>1000 grain weight, g</th>
<th>Test weight, kg</th>
<th>Vitreousness, %</th>
<th>Protein, %</th>
<th>Gluten</th>
<th>Wet, %</th>
<th>Dry, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vuzhod</td>
<td>Control – non-treated</td>
<td>45.6</td>
<td>80.3</td>
<td>85.2</td>
<td>12.48</td>
<td>21.5</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritimil - 300 ml/ha</td>
<td>46.8</td>
<td>80.7</td>
<td>88.4</td>
<td>13.11</td>
<td>23.5</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Napsil - 300 ml/ha</td>
<td>46.6</td>
<td>80.0</td>
<td>88.4</td>
<td>12.95</td>
<td>23.0</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Napsil - 500 ml/ha</td>
<td>46.8</td>
<td>80.5</td>
<td>88.8</td>
<td>13.44</td>
<td>24.2</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cemofol - 500 ml/ha</td>
<td>46.2</td>
<td>80.1</td>
<td>88.8</td>
<td>12.92</td>
<td>23.2</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cemofol - 700 ml/ha</td>
<td>46.4</td>
<td>80.8</td>
<td>89.0</td>
<td>13.54</td>
<td>24.3</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>Control – non-treated</td>
<td>40.8</td>
<td>82.7</td>
<td>77.4</td>
<td>11.14</td>
<td>16.5</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritimil - 300 ml/ha</td>
<td>42.2</td>
<td>83.4</td>
<td>80.3</td>
<td>12.17</td>
<td>19.7</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Napsil - 300 ml/ha</td>
<td>42.2</td>
<td>82.8</td>
<td>80.2</td>
<td>12.03</td>
<td>19.5</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Napsil - 500 ml/ha</td>
<td>42.2</td>
<td>82.7</td>
<td>81.2</td>
<td>12.11</td>
<td>20.2</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cemofol - 500 ml/ha</td>
<td>42.6</td>
<td>82.6</td>
<td>80.3</td>
<td>11.80</td>
<td>19.1</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cemofol - 700 ml/ha</td>
<td>42.8</td>
<td>82.8</td>
<td>81.0</td>
<td>11.96</td>
<td>19.3</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>

LSD 5 % | 4.8 | 6.3 | 3.0 | 0.41 | 1.7 | 0.8 |
LSD 1 % | 6.4 | 8.5 | 5.1 | 0.57 | 2.8 | 1.7 |
LSD 0.1 % | 8.2 | 10.7 | 7.2 | 0.84 | 4.9 | 2.2 |

Average for the period of study stimulator Napsil leads to use of the test stimulators (Table 2). However, with all options the value of this indicator is above the requirements of standards. Test weight characterizes grain consistence and it is one of the most important technological parameters. It does not change under the influence of Tritimil, Napsil Cemofol in both cultivars, although some increase is reported in relation to non-treated control and there is some variation during different years. Test weight retained its high values typical of durum wheat - in all variants it is over 80 kg in
cultivar Vuzhod and over 82 kg in cultivar Saturn. Vitreousness of the grain is increase proved in the treatment with the three stimulators, although some variation is obtained over the years. In all cases it is with values above the requirements of international standards for over 75 % vitreousness. Under all variants vitreousness is high - more than 85 % in cultivar Vuzhod and more than 77 % in cultivar Saturn.

The protein content was determined by cultivar, but very much depending on weather conditions and farming practices. Treatment with the three stimulators increases the protein content, most pronounced by the use of Napsil in dose of 500 ml/ha. Wet and dry gluten contents are very important elements of the qualitative characteristics of the grain. The data show that all stimulators increase the gluten content. The increase was the greatest for treatment with Napsil at a dose of 500 ml/ha.

One of the important conditions for obtaining normal crop and good harvest is the use of quality seeds. Seeds must have the necessary sowing properties, the main of which are high germination energy and seed germination. Germination energy is one of the most important characteristics of the sowing properties of the seed. The high germination energy is the reason for faster development of primary roots and coleoptile after seed germination and is associated with earlier germination in field conditions, bigger tempering of plants and a lower risk of frost in the winter. Germination is the most important index characterizing the sowing properties of the seed. At high laboratory germination sowing should be done with lower sowing rate, which decreases the production cost. It was found that stimulators Tritimil, Napsil and Cemofol increased germination energy and seed germination in both durum wheat cultivars - Vuzhod and Saturn (Table 3). This led to higher grain yields. The obtained results for germination energy and seed germination are a prerequisite to continue to investigate the effect of stimulators on the initial intensity of the growth of seeds, expressed by the length of roots and coleoptiles. It was found that the influence of the three stimulators on the length of the primary root is stronger than their effect on the length of the coleoptile. Their positive effect on early growth of seeds leads to better rooting of young plants, less damage by frost and prevents plant withdrawal during winter months.

At the evaluation of the sowing characteristics we have to consider not only the characteristics of the sowing seeds but also the quantity of the waste grain (siftings) which are gained at the preparation of these seeds. The treatment with stimulators Tritimil, Napsil and Cemofol of cultivars Vuzhod and Saturn in tillering stage of durum wheat decreases the amount of screenings received. Less amount of screenings leads to lower cost of the seed and increases the economic effect of seed production of durum wheat. Increases in the values of germination energy and laboratory seed germination, increase the intensity of the initial growth, expressed by the length of the root and coleoptile at germination and the decrease in the quantity of waste grain under the influence of the herbicides are explained by the positive effects on growth and development of durum wheat during its vegetation period.

Conclusion

Stimulators Tritimil, Napsil and Cemofol decreased less the 1“ and 2” overgrown internode length of cultivar Saturn compared to cultivar Vuzhod. Napsil and Cemofol increased grain yield by 9.0 % and 10.9 % in cultivar Vuzhod and by 10.3 % in cultivar Saturn. Both stimulators have equal or increased effectiveness compared to the standard Tritimil. Investigated stimulators increased the

Table 3. Sowing properties of the seeds (mean 2007-2009)

<table>
<thead>
<tr>
<th>Variants</th>
<th>Cultivars</th>
<th>Germinative energy, %</th>
<th>Germination %</th>
<th>Length, cm</th>
<th>Waste grain, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vuzhod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control – non-treated</td>
<td>92.0</td>
<td>93.5</td>
<td>10.6</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>Tritimil - 300 ml/ha</td>
<td>95.0</td>
<td>96.5</td>
<td>11.2</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>Napsil - 300 ml/ha</td>
<td>93.5</td>
<td>96.0</td>
<td>11.1</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>Napsil - 500 ml/ha</td>
<td>96.0</td>
<td>98.0</td>
<td>11.2</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>Cemofol - 500 ml/ha</td>
<td>94.0</td>
<td>95.5</td>
<td>11.2</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>Cemofol - 700 ml/ha</td>
<td>95.0</td>
<td>96.5</td>
<td>11.7</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>Saturn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control – non-treated</td>
<td>89.5</td>
<td>91.5</td>
<td>10.2</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>Tritimil - 300 ml/ha</td>
<td>94.0</td>
<td>96.0</td>
<td>12.4</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>Napsil - 300 ml/ha</td>
<td>93.0</td>
<td>95.5</td>
<td>11.1</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>Napsil - 500 ml/ha</td>
<td>93.5</td>
<td>97.5</td>
<td>11.7</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>Cemofol - 500 ml/ha</td>
<td>94.5</td>
<td>97.0</td>
<td>10.2</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>Cemofol - 700 ml/ha</td>
<td>96.5</td>
<td>98.0</td>
<td>10.6</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>LSD 5 %</td>
<td>1.4</td>
<td>1.8</td>
<td>0.43</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>LSD 1 %</td>
<td>2.9</td>
<td>3.3</td>
<td>0.61</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>LSD 0.1 %</td>
<td>4.3</td>
<td>4.6</td>
<td>0.78</td>
<td>1.78</td>
</tr>
</tbody>
</table>
vitreousness, protein content, wet and dry gluten contents. Stimulators Tritimil, Napsil and Cemofol increased germination energy and seed germination and decreased the quantity of waste grain.

References

CORRECTIONS

On:
AGRICULTURAL SCIENCE AND TECHNOLOGY, VOL. 1 No 4 pp 130

Figure 4 is:

and have to be:

Figure 4. Duration of the period to heading and maturity in the group of late varieties expressed as relative value from the standard.

The Editorial board of Agricultural Science and Technology would like to apologize to the author of the paper Mr. N. Tsenov and all scientists interested in our journal for the technical error, made by the publishing house.
A criterion of sufficient information is to be experiments should be described in detail. The objects of hypothesis and goal ?

Material and methods:

Acknowledgments (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal ?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar; etc.)

The following order in the reference list is recommended:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.
CONTENTS

Genetics and Breeding

Synchronization of estrous in gilts with Altrenogest
S. Dimitrov, G. Bonev, Hr. Taseva

Phenotypic stability of new cotton varieties with improved fiber quality
A. Stoilova

Effect of age upon the reproductive performance of Japanese quails
A. Genchev

Nutrition and Physiology

Ethological evaluation of a building for free housing of dairy cows.
II. Behavioural activities in the winter
I. Varlyakov, T. Slavov, N. Grigorova

Effect of the addition of VemoZim F (phytase) to diets with decreased content of phosphorus on the microstructure of tibia in broiler chickens
V. Georgieva, D. Yovchev, A. Atanasov

Production Systems

Quantitative changes in major components of lavender oil during the distillation process
G. Zhekova, N. Nedkov

Influence of some stimulators on the grain yield and sowing-seed properties of two durum wheat cultivars
G. Delchev, D. Nenkova, D. Stoychev

Agriculture and Environment

Anthropogenically disturbed soils and methods for their reclamation
M. Banov, V. Tsoloova, P. Ivanov, M. Hristova

Using microwave mineralization in order to determine heavy metal concentration in samples of herbs used for pharmaceutical purposes
L. Dospatliev

Tolerance of lucerne varieties to Apion seniculus Kirby (Coleoptera: Curculionidae)
I. Nikolova, N. Georgieva

Quality and Safety

Probiotic characteristics of lactic acid bacteria isolated from feces of breast-fed infant
S. Boycheva

Heat-induced changes in organic compounds characteristics and properties of sandy soils
I. Atanassova, S. Doerr

Journal web site:
www.uni-sz.bg/ascitech/index.html

Publisher:
www.alfamarket.biz