Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access

This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
http://www.uni-sz.bg/ascitech/

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
AGRICULTURAL

SCIENCE AND TECHNOLOGY

2013

An International Journal Published by Faculty of Agriculture,
Trakia University, Stara Zagora, Bulgaria
Evaluation of double haploid lines of winter malting barley using selection indices

B. Dyulgerova*, D. Valcheva

Institute of Agriculture, 8400 Karnobat, Bulgaria

Abstract. Twenty two double haploid lines from winter malting barley breeding program of the Institute of Agriculture – Karnobat were tested in randomized complete block design with four replications. The objective of this study was to evaluate the breeding potential of double haploid lines of winter malting barley using multiple selection indices. Selection indices used included: Elston’s index, Baker’s index, Rank summation index and a simple-weighted index as proposed by Wehner. The significant correlation between selection indices calculated for 6 quality traits (1000 grain weight, hectoliter weight, malt extract content, protein content, germination on day 3 and grain grading) and indices based on the most important 4 (1000 grain weight, hectoliter weight, malt extract content and protein content) quality traits was found, indicating that the 4-trait indices could be substituted using 6-trait indices to save work in data collection. Selection indices were calculated using the most important 4 quality traits and grain yield. The lines A 9/16, A 8/3, A 25/19, A 15/2 combine the desired quality characteristics with high grain yield and can be selected for further evaluation in a breeding program of winter malting barley.

Keywords: winter malting barley, selection indices, quality, yield

Introduction

Barley is produced for human consumption, animal feed, pharmaceuticals, and alcoholic beverage products (Ulrich, 2011). Significant amount of barley is used for brewing. The beer industry has special and strict quality requirements. Both high grain yield and malt quality of grain are important in the development of advanced breeding lines which will potentially produce new varieties. Therefore, in malting barley breeding programs there is a need for improving many traits at the same time. One method of identifying superior genotypes for multiple traits is the use of selection indices. There are many such indices available to the breeder to aid the selection process.

Elston proposed a multiplicative index constructed without economic weighting of the traits (Elston, 1963). Index values are calculated by multiplication of phenotypic deviations for each trait in the index. Baker’s standard deviation index is a linear index based on summation of the mean of each trait divided by its standard deviation (Baker, 1986). Mulmbda and Mock (1978) described a rank summation index, which they called a “parameter-free” index. Index values are calculated by summing the ranks of the traits included in the index. Like Elston’s index, Baker’s and the rank summation indices eliminate the need to assign relative economic weights to traits. Wehner (1985) constructed the simple-weighted index, in which each trait was corrected so that its value increased as the trait improved. Next, the traits were transformed so that all traits were measured on a similar scale. Each trait then was multiplied by the fraction of 1.00 that the breeder wished to assign in to indicate its importance in the aggregate genotype.

The objective of this study was to evaluate the breeding potential of 22 double haploid lines of winter malting barley using qualitative traits and grain yield by multiple selection indices.

Material and methods

This research was conducted in the 2011 – 2012 growing season in the experimental field of the Institute of Agriculture, Karnobat, Southeastern Bulgaria. The experiments were organized in a Randomized Complete Block Design with 4 replications on plots of 10 m². Standard agronomic and plant protection practices were used. Twenty two double haploid lines of winter malting barley breeding program of the Institute of Agriculture, Karnobat, obtained via anther culture were studied. Grain yield (t/ha), 1000 grain weight (g), hectoliter weight (kg), malt extract content (%), protein content (%), germination energy (%), and grain grading (%) were evaluated. Protein content was measured by the Kjeldahl method. Malt extract content and germination were determined on the basis on EBC (Analytica-EBC, 1987).

To rank the genotypes by phenotypic values four selection indices were used in this study.

Elston’s (Elston, 1963) index \(I_e\) was calculated as follows:
\[
I_e = \left(\frac{P_i - m_i}{\sigma_i} \right) \left(\frac{P_j - m_j}{\sigma_j} \right) \ldots \left(\frac{P_n - m_n}{\sigma_n} \right)
\]
where \(P_i\) is mean of \(n\)-th trait, and \(m_i\) is minimum value for the \(n\)-th trait.

For protein content the reciprocals of the observed values were taken, because for this trait a smaller phenotypic value is desirable.

Baker’s (Baker, 1986) standard deviation index \(I_s\) was calculated as follows:
\[
I_s = \sum P_i \sigma_i
\]
where \(P_i\) is mean of \(n\)-th trait, and \(\sigma_i\) is phenotypic standard deviation for \(n\)-th mean.

The rank summation index \(I_r\) was calculated as follows:
\[
I_r = \sum \text{Rank } P_i
\]
where Rank \(P_i\) is the rank on the \(n\)-th mean (Mulmbda and Mock, 1978).

The simple-weighted index \(I_w\) as proposed by Wehner (1982) was calculated as follows:
\[
I_w = \sum a_i P_i
\]
where \(a_i\) is fraction of 1.00 indicating the importance of the \(n\)-th trait in the aggregate genotype, and \(P_i\) is scaled mean of the \(n\)-th trait, where the means are scaled so that all are on a 1 to 10 basis.

Coefficients used to construct the simple-weighted index:
Germination is critical to the malting process. A minimum of 9 DH lines are given in Table 1. Germination is an absolute requirement (Briggs, 1998). The germination was excellent for lines A8/1, A8/25, A8/35, A15/2 and A25/19. The 1000 grain weight of the breeding lines varied between 42.0 g to 55.5 g. The 10 lines showed a very high (above 48.0 g) 1000 grain weight. Grain grading is a very important quality characteristic – to ensure a good and uniform malting process there is demand for big and uniform grain size. The percentage of grains on a 2.5 x 20 mm sieve for malt barley must be no less than 91%. Of the studied lines A8/3, A8/11, A8/12, A8/19, A8/25, A15/2 and A25/19 meet this requirement for malting barley. The next important malting barley parameter is hectolitre weight. According to this character all evaluated lines exceeded the recommended level for malting barley (>70.00 kg).

Malting barley with a high protein content results in lower extract for the brewing. It also slows down water uptake during steeping, potentially affecting final malt quality. A very low protein level, on the other hand, results in lack of enzymes necessary to modify the barley kernel and to break down starch during brewing. barley used for malt should have a grain protein content not exceeding 12% (Home, 1991; Home and Elamo, 1993). Lines A8/1, A8/12, A8/25, A8/28 and A15/2 showed protein content below 12.0%. For brewing industry the highest possible extract content is demanded and in good malting barley it is over 79%. The best extract content was shown by lines A9/15, A25/19, A8/1, A8/3, A8/13 and A24/2. The extract of lines A8/7, A8/11, A8/12, A8/25, A8/33 were low. The grain yield of the breeding lines varied between 4.55 to 6.61 t/ha. Among the tested genotypes, the highest grain yield was obtained from lines

Results and discussion

The mean values of 6 quality characters and grain yield of 22 DH lines are given in Table 1. Germination is critical to the malting process. A minimum of 95% germination on a day 3 germination test is an absolute requirement (Briggs, 1998). The germination was calculated using 6 quality traits – 1000 kernel weight, hectolitre weight, malt extract content, protein content, germination on day 3 and grain grading. Indices based on the most important 4 (1000 kernel weight, hectolitre weight, malt extract content and protein content) out of 6 quality traits were calculated – 4l, 4f, 4i, and l indices to determine whether the 4-trait indices could substitute the use of 6 traits to save work in data collection.

All four indices l, f, i, and l were calculated using the most important 4 quality traits and grain yield. The selection indices were compared using Spearman’s rank correlation (Steel and Torrie, 1980).

Table 1. Mean values for 6 quality characters and grain yield of 22 DH lines

<table>
<thead>
<tr>
<th>No</th>
<th>DH lines</th>
<th>Germination energy, %</th>
<th>1000 grain weight, g</th>
<th>Hectolitre weight, kg</th>
<th>Grading > 2.5mm, %</th>
<th>Extract content, %</th>
<th>Protein content, %</th>
<th>Grain yield, t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A 8/1</td>
<td>99.8</td>
<td>47.0</td>
<td>81.7</td>
<td>84.8</td>
<td>79.2</td>
<td>11.93</td>
<td>5.15</td>
</tr>
<tr>
<td>2</td>
<td>A 8/3</td>
<td>97.0</td>
<td>50.0</td>
<td>79.5</td>
<td>92.8</td>
<td>79.1</td>
<td>13.42</td>
<td>6.48</td>
</tr>
<tr>
<td>3</td>
<td>A 8/6</td>
<td>96.8</td>
<td>42.5</td>
<td>73.9</td>
<td>75.9</td>
<td>78.6</td>
<td>13.17</td>
<td>4.96</td>
</tr>
<tr>
<td>4</td>
<td>A 8/7</td>
<td>97.5</td>
<td>44.5</td>
<td>72.7</td>
<td>80.5</td>
<td>77.5</td>
<td>13.67</td>
<td>4.86</td>
</tr>
<tr>
<td>5</td>
<td>A 8/8</td>
<td>97.8</td>
<td>42.5</td>
<td>73.4</td>
<td>78.9</td>
<td>77.8</td>
<td>13.67</td>
<td>4.91</td>
</tr>
<tr>
<td>6</td>
<td>A 8/11</td>
<td>98.0</td>
<td>50.5</td>
<td>82.2</td>
<td>91.6</td>
<td>76.6</td>
<td>13.67</td>
<td>4.90</td>
</tr>
<tr>
<td>7</td>
<td>A 8/12</td>
<td>99.3</td>
<td>48.0</td>
<td>79.9</td>
<td>91.7</td>
<td>76.1</td>
<td>11.93</td>
<td>4.55</td>
</tr>
<tr>
<td>8</td>
<td>A 8/13</td>
<td>97.3</td>
<td>45.5</td>
<td>81.5</td>
<td>79.2</td>
<td>79.2</td>
<td>13.00</td>
<td>5.53</td>
</tr>
<tr>
<td>9</td>
<td>A 8/19</td>
<td>97.0</td>
<td>50.0</td>
<td>81.2</td>
<td>95.4</td>
<td>76.2</td>
<td>13.17</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>A 8/25</td>
<td>99.8</td>
<td>52.5</td>
<td>81.4</td>
<td>94.7</td>
<td>73.4</td>
<td>13.17</td>
<td>5.38</td>
</tr>
<tr>
<td>11</td>
<td>A 8/27</td>
<td>97.0</td>
<td>46.5</td>
<td>81.5</td>
<td>84.5</td>
<td>77.9</td>
<td>11.93</td>
<td>5.30</td>
</tr>
<tr>
<td>12</td>
<td>A 8/28</td>
<td>98.9</td>
<td>46.5</td>
<td>74.0</td>
<td>88.7</td>
<td>78.3</td>
<td>11.93</td>
<td>4.84</td>
</tr>
<tr>
<td>13</td>
<td>A 8/33</td>
<td>97.3</td>
<td>50.0</td>
<td>73.5</td>
<td>85.6</td>
<td>77.5</td>
<td>12.43</td>
<td>5.69</td>
</tr>
<tr>
<td>14</td>
<td>A 8/35</td>
<td>99.5</td>
<td>47.0</td>
<td>75.0</td>
<td>85.7</td>
<td>79.4</td>
<td>12.43</td>
<td>5.26</td>
</tr>
<tr>
<td>15</td>
<td>A 9/8</td>
<td>95.3</td>
<td>43.5</td>
<td>79.3</td>
<td>72.5</td>
<td>77.8</td>
<td>13.10</td>
<td>5.28</td>
</tr>
<tr>
<td>16</td>
<td>A 9/10</td>
<td>98.0</td>
<td>49.0</td>
<td>83.5</td>
<td>90.8</td>
<td>78.5</td>
<td>13.67</td>
<td>6.38</td>
</tr>
<tr>
<td>17</td>
<td>A 9/12</td>
<td>98.0</td>
<td>43.0</td>
<td>80.7</td>
<td>75.2</td>
<td>77.6</td>
<td>14.17</td>
<td>5.45</td>
</tr>
<tr>
<td>18</td>
<td>A 9/15</td>
<td>98.5</td>
<td>43.0</td>
<td>79.7</td>
<td>74.9</td>
<td>80.4</td>
<td>13.10</td>
<td>5.50</td>
</tr>
<tr>
<td>19</td>
<td>A 9/16</td>
<td>96.3</td>
<td>49.0</td>
<td>83.3</td>
<td>71.0</td>
<td>78.4</td>
<td>12.61</td>
<td>6.61</td>
</tr>
<tr>
<td>20</td>
<td>A 15/2</td>
<td>100.0</td>
<td>51.0</td>
<td>81.6</td>
<td>91.2</td>
<td>78.6</td>
<td>11.86</td>
<td>6.04</td>
</tr>
<tr>
<td>21</td>
<td>A 24/2</td>
<td>96.3</td>
<td>42.0</td>
<td>82.2</td>
<td>76.0</td>
<td>79.4</td>
<td>12.36</td>
<td>5.96</td>
</tr>
<tr>
<td>22</td>
<td>A 25/19</td>
<td>98.0</td>
<td>55.5</td>
<td>83.0</td>
<td>96.0</td>
<td>80.3</td>
<td>12.85</td>
<td>6.09</td>
</tr>
<tr>
<td>23</td>
<td>Obzor</td>
<td>98.5</td>
<td>45.0</td>
<td>73.5</td>
<td>82.6</td>
<td>78.4</td>
<td>13.42</td>
<td>6.04</td>
</tr>
<tr>
<td>24</td>
<td>Emon</td>
<td>97.0</td>
<td>51.0</td>
<td>73.9</td>
<td>95.4</td>
<td>79.6</td>
<td>12.75</td>
<td>5.80</td>
</tr>
</tbody>
</table>

LSD 0.05% 1.5 3.5 3.7 8.1 1.6 0.69 0.66
A/8, A/8/10, A 9/16, A 15/2 and A25/19 but were not significantly different than those obtained in standard variety Obzor.

In our study we used simple selection indices for evaluation of breeding lines (Table 2). The main advantage of the simple indices is that they do not require estimates of genetic parameters and are easy to construct, while the main disadvantage is that they do not take into account the inheritance of traits or their phenotypic or genetic associations. According to the multiple selection indices I_s and l_t for six and for four studied traits and the I_s, we observe superior malt quality of grain in DH lines A 25/19, A 15/2 and A 8/1, which present high values of germination energy, TGW and hectoliter weight associated with high extract contain. The high quality potential of these lines can be used in a breeding program of winter barley for malting purposes. An inferior quality of grains was observed in lines: A 9/8, A 8/8, A 8/7 according to the l_s, l_t and l_s indices and in lines A 8/12, A 8/25, A 8/7 according to the l_s index.

The l_s, I_s, l_t and I_s indices were significantly correlated with each other, indicating that any of those 4 indices can be substituted for the other (Table 3). Furthermore, the 4I_s and 4I_t were strongly correlated with l_s.

| Table 2. Selection indices values for quality characters |
|---------------------------------|-----|-----|-----|-----|-----|-----|
| № | DH lines | 6I_s | 4I_s | 6I_t | 4I_t | I_s |
| 1 | A 8/1 | 38.6 | 19.8 | 183.7 | 105.6 | 28.5 | 44.5 | 2.2 |
| 2 | A 8/3 | 44.3 | 20.5 | 180.6 | 103.5 | 48.5 | 71.5 | 1.8 |
| 3 | A 8/6 | 13.8 | 6.9 | 175.0 | 100.0 | 67.5 | 105.5 | 1.5 |
| 4 | A 8/7 | 19.1 | 6.6 | 175.1 | 98.8 | 83.0 | 111.0 | 1.1 |
| 5 | A 8/8 | 16.5 | 5.6 | 174.7 | 98.7 | 83.5 | 113.5 | 1.2 |
| 6 | A 8/11 | 44.8 | 21.2 | 180.1 | 102.5 | 50.2 | 71.0 | 1.3 |
| 7 | A 8/12 | 40.6 | 15.9 | 181.7 | 103.4 | 50.5 | 63.5 | 0.9 |
| 8 | A 8/13 | 28.3 | 18.1 | 178.9 | 103.5 | 43.0 | 78.0 | 1.9 |
| 9 | A 8/19 | 45.7 | 19.3 | 179.9 | 102.5 | 56.0 | 76.5 | 1.2 |
| 10 | A 8/25 | 47.9 | 19.2 | 180.8 | 101.4 | 52.0 | 59.0 | 0.9 |
| 11 | A 8/27 | 33.3 | 17.8 | 180.6 | 104.5 | 41.5 | 73.5 | 2.0 |
| 12 | A 8/28 | 32.4 | 10.7 | 180.7 | 102.8 | 50.0 | 67.0 | 1.8 |
| 13 | A 8/33 | 29.5 | 12.9 | 178.5 | 102.3 | 55.5 | 85.5 | 1.5 |
| 14 | A 8/35 | 33.0 | 13.3 | 181.3 | 103.1 | 41.5 | 55.5 | 1.9 |
| 15 | A 9/8 | 14.0 | 12.5 | 174.5 | 101.3 | 65.0 | 112.0 | 1.5 |
| 16 | A 9/10 | 45.7 | 22.9 | 181.2 | 103.6 | 43.0 | 64.0 | 1.6 |
| 17 | A 9/12 | 20.4 | 13.2 | 175.6 | 100.1 | 74.5 | 107.5 | 1.1 |
| 18 | A 9/15 | 22.9 | 15.0 | 179.2 | 102.9 | 49.0 | 78.0 | 1.8 |
| 19 | A 9/16 | 23.6 | 22.6 | 178.7 | 105.0 | 33.0 | 79.5 | 1.9 |
| 20 | A 15/2 | 48.3 | 23.1 | 185.3 | 106.4 | 21.0 | 32.0 | 2.2 |
| 21 | A 24/2 | 21.5 | 15.5 | 178.1 | 103.8 | 39.0 | 80.5 | 1.9 |
| 22 | A 25/19 | 60.7 | 30.7 | 187.0 | 107.5 | 17.0 | 21.0 | 2.2 |
| 23 | Obzor | 24.4 | 8.8 | 183.7 | 105.6 | 69.5 | 93.5 | 1.4 |
| 24 | Emon | 42.8 | 16.4 | 180.6 | 103.5 | 36.0 | 56.5 | 1.9 |

| Table 3. Spearman rank correlations among selection indices calculated for quality characters |
|---------------------------------|-----|-----|-----|-----|-----|-----|
| Index | 6I_s | 4I_s | 6I_t | 4I_t | 6I_s | 4I_t |
| 4I_s | 0.798** | 0.785** | 0.558** | 0.504* | 0.653** | 0.717** |
| 6I_s | 0.535* | 0.729** | 0.579** | 0.824** | 0.855** | 0.700** |
| 6I_t | 0.862** | 0.598** | 0.754** | 0.869** | 0.489* | |
| I_s | 0.236 | 0.464* | 0.375 | 0.751** | 0.179* | |

** Correlation is significant at the 0.01 level, * Correlation is significant at the 0.05 level.
index. When the coefficients used to construct the simple-weighted index were 0.6 for grain yield and 0.4 for the four quality traits, lines A 9/16, A 8/3, A 25/19, A 15/2 had the highest index value. These lines can be selected for further evaluation in a breeding program of winter malting barley. The genotypes possessing the best combination of traits of economic importance were identified and hence are recommended to be utilized directly or included in a hybrid programme for varietal development. Our study also demonstrates that simple selection indices can be successfully used in barley breeding when it is needed to evaluate a large number of lines for many traits simultaneously.

Conclusion

The significant correlation between selection indices calculated for 6 quality traits (1000 grain weight, hectoliter weight, malt extract content, protein content, germination on day 3 and grain grading) and indices based on the most important 4 quality traits (1000 grain weight, hectoliter weight, malt extract content and protein content) it was found that the 4-trait indices could substitute the use of 6-trait indices to save work in data collection.

Lines A 9/16, A 8/3, A 25/19, A 15/2 combine the desired quality characteristics with high grain yield and can be selected for further evaluation in a breeding program of winter malting barley.

References

Contents

Genetics and Breeding

Investigation on the possibility to efficiently use Ukrainian cultivars for developing of early winter wheat lines
I. Grain productivity
N. Tsenov, T. Petrova, E. Tsenova

Combining ability for grain yield of late maize lines
N. Petrovska

Use of recurrent selection in middle late synthetic maize population
I. Results of the first cycle in synthetic “1/2005”
N. Petrovska, V. Valkova

Genetic diversity and distance between two Bulgarian local sheep breeds assessed by microsatellite markers
S. Georgieva, E. Todorovska, D. Hristova, I. Dimitrova, N. Stancheva, Ts. Yablanski

Testing of new Bulgarian sunflower hybrids under the conditions of North-East Bulgaria
I. Productivity and traits related to productivity
G. Georgiev, P. Peevska, E. Penchev

Comparative morphological study of new Burley tobacco lines
T. Radoukova, Y. Dyulgerski

Effect of genotypic and environmental factors on the inheritance of the main characters in chickpea and relationships between them
R. Sturzu, T. Nistot, Cr. Melucă, Fl. Bodescu, A. Stoiolova

Evaluation of double haploid lines of winter malting barley using selection indices
B. Dyulgerova, D. Valcheva

Evaluation of the combining ability of grain yield of mutant maize lines
M. Ilchovska

Comparative study of some biochemical indicators in Karakachan and Copper-Red Shumen sheep breeds
G. Angelov, I. Dimitrova, T. Mehmedov, P. Stamberov, N. Stancheva, S. Georgieva, Zh. Nakev

Nutrition and Physiology

Impaired pancreatic function in mulard ducks with experimental aflatoxicosis
I. Valchev, N. Grozeva, D. Kanakov, Ts. Hristov, L. Lazarov, R. Binev, Y. Nikolov

Comparative investigations on feeding efficiency in growing and fattening DanBred and Topigs hybrid pigs
G. Ganchev, A. Ilchev

Blood parameters in yearling sheep fed Paulownia (Paulownia spp.) leaves
I. Varlyakov, V. Radev, T. Slavov, G. Ganchev
Changes in some blood parameters in yearling rams fed diets with different protein and lipid levels
V. Radev, T. Slavov, I. Varlyakov

Effect of the sowing norm and nitrogen fertilization on the yield from dry bean (*Phaseolus vulgaris* L.) cultivar Beslet
G. Milev

Evapotranspiration of corn crop for silage
R. Bazitov, A. Stoyanova

Productivity and economic traits of winter oilseed rape (*Brassica napus var. biennis*) under the conditions of Dobrudzha
G. Georgiev, G. Georgiev, P. Chamurtliyski

Feasibility of the use of heat energy from alternative sources for air conditioning in sows facility
K. Peichev, R. Georgiev

Productivity of green beans, irrigated at different pre-irrigation soil moisture
R. Petrova, A. Matev, K. Koumanov, B. Harizanova-Petrova

Comparative assessment of plant resources as substrates for bioslam production
Z. Shindarska, V. Kirov, G. Kostadinova, B. Baykov

The influence of organic carbon on bioremediation process of wastewater originate from aquaculture with use of microalgae from genera *Botryococcus* and *Scenedesmus*
I. Sirakov, K. Velichkova, G. Beev, Y. Staykov

Sanitary hygienic assessment of drinking water from underground source at a pig farm
G. Kostadinova

Study of bee honey by spectral analysis in the near infrared spectrum
I. Zhelyazkova, S. Atanasova, K. Elencheva – Karaneycheva

Comparative GC/MS analysis of lavender (*Lavandula angustifolia* Mill.) inflorescence and essential oil volatiles
T. Zagorcheva, S. Stanev, K. Rusanov, I. Atanassov

Influence of key factors on the time of initial coagulation of cow’s milk using milk-clotting enzyme of camel origin
P. Panayotov, K. Yoanidu, P. Boyanova, B. Milenkov
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Thesis:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Books: