Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access

This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
+359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
Biological activity of plant protection products against *Tuta absoluta* (Meyrick) in tomato grown in greenhouses

N. Valchev¹, V. Yankova*², D. Markova³

¹Department of Plant Production, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
²Maritsa Vegetable Crops Research Institute, 32 Brezovsko shose, 4003 Plovdiv, Bulgaria

Abstract. Tomato leaf miner *Tuta absoluta* (Meyrick) (*Lepidoptera: Gelechiidae*) is a dangerous pest in tomato grown in greenhouses. The control of this pest is difficult because of the latent way of life of the larvae in the mines, high reproductive potential, polyvoltine development and manifestation of resistance to great part of applied insecticides. Integrated Plant Protection programmes including a complex of measures are developed for successful control of the pest. The most frequently used practice for control on *T. absoluta* is still the application of chemical insecticides. During the period 2011-2012 experiments were performed for determination of the effectiveness of some insecticides in tomato variety Velocity grown in heated greenhouses. A very good biological activity towards the larvae (L1-L4) of tomato leaf miner (*Tuta absoluta* Meyrick) was established in the products Avant 150 EC 250 ml/ha (*E*=79.38% 14° day after treatment) and Coragen 20 SC 0.018% (*E*=79.18% 14° day after treatment).

Keywords: *Tuta absoluta*, insecticide, tomato, effectiveness

Introduction

Tomato leaf miner *Tuta absoluta* (Meyrick) (*Lepidoptera: Gelechiidae*) has become one of the dangerous pests in tomato greenhouse production in recent years. Larvae make damages attacking all above-ground parts of the tomato plant - extensive mines on the leaves, carving turns in the stem, entrances in the top bud, in the green and ripe fruits could be observed.

Control of this pest is difficult because of the latent way of life of the larvae in the mines, high reproductive potential, polyvoltine development and manifestation of resistance to great part of the applied insecticides (Sequera et al., 2000; Lietti et al., 2005). Integrated plant protection systems including a complex of practices (crop rotation, use of pheromone traps, installation of insect nets, application of bioagents and bioproducts, treatment with insecticides) are developed for successful control of the pest (EPPO Bulletin, 2005; Benvenga et al., 2007; Faria et al., 2008; Huber and Drozby, 2010). It was established that the product Afarm possesses good effectiveness towards the pest (a. i. emamektin) (López et al., 2011). Products with active ingredient (a. i.) deltamethrin, lambda cyhalothrin and indoxacarb are also used for control of *T. absoluta* (Salazar and Araya, 2001; Korycinska and Moran, 2009). Collavino and Giménez (2008) report that for control of tomato leaf miner products with a. i. imidakloprid could be used. Preliminary studies in Spain show that the products with a. i. spinosad and indoxacarb have been effective against the larvae of the pests and the insecticides based on deltamethrin and metomyl could be used for control of adults although the latter have negative side effect on the natural enemies and pollinators (Potting et al., 2010).

The most frequently used practice for control of *T. absoluta* is still the application of chemical insecticides. There are many studies for determination of the effectiveness of plant protection products with a view to create successful plant protected strategy for control of tomato leaf miner with minimum risk of appearance of resistance in the populations (Lietti et al., 2005; Bielza, 2010; Karadzhova et al., 2010; NSPP, 2010; BFSA, 2012; Braham and Hajji, 2012).

The purpose of the study is to establish the biological activity of plant protection products with different active ingredients towards tomato leaf miner in tomato grown in greenhouses.

Material and methods

The trials were carried out in Plovdiv in 2011-2012 in heated greenhouses with tomato variety Velocity. The effectiveness of 4 plant protection products was established: deltamethrin (Decis 2.5 EC 0.05%), imidakloprid+deltamethrin (Confidor Energy OD 0.08%), indoxacarb (Avant 150 EC 170 ml/ha, Avant 150 EC 250 ml/ha) and rinazipir (Coragen 20 SC 0.016%, Coragen 20 SC 0.018%). Observations were made on preliminary fixed plants and leaves at natural population density (*Tuta absoluta* Meyrick) larvae 1-4 instar (L1-L4). Number of replications per variant - 4. Living larvae were counted before treatment and in intervals 3rd, 7th and 14th day after treatment. The effectiveness (E%) was calculated by the Henderson-Tilton formula. A comparative analysis by the method Duncan's multiple range test was made (1955). The results were processed mathematically by three-way analysis of variance (Lidanski, 1988).

Results and discussion

It was established that the best biological activity towards larvae of tomato leaf miner (*Tuta absoluta* Meyrick) have the products Avant 150 EC 250 ml/ha (*E*=79.38% 14° day after treatment) and Coragen 20 SC 0.018% (*E*=79.18% 14° day after treatment) (Table 1). The recorded values for these insecticides are comparatively...
higher than the maximum effectiveness in Decis 2.5 EC 0.05% (E=55.02% 7th day after treatment). The results obtained confirm the
data by Potting et al. (2009) for good contact action of the pyrethroids
that make them suitable against the adults but towards larvae. This
tendency was also observed in the picture of infestation by the pest
expressed as average number of larvae per leaf. The lowest
average number of larvae treatment was recorded in the variant
treated with product Avant 150 EC 250 ml/ha and Coragen 20 SC 0.016% (Figures 1 and 2).
The product Confidor Energy OD 0.08% has middle position. The
maximum value of effectiveness established for this product
(75.88% 14th day after treatment) is close to that recorded in Coragen
20 SC 0.016% (73.99% 14th day after treatment) and Avant 150 EC
170 ml/ha (72.86% 14th day after treatment).
The products tested Avant 150 EC and Coragen 20 SC demonstrated good effectiveness towards the larvae of *T. absoluta* in the two studied doses/concentrations and depending on the status of the population these products could be used successfully for control of the pest in particular conditions. The good biological activity of Confidor Energy OD 0.08% gives a reason to include it in the plant protected systems as an alternative of the products with different active ingredients and mechanisms of action in order to avoid the possibility of appearance of resistance. On the basis of a three-way analysis of variance it was established that among the factors of variation: variant (plant protection product) (A), days after treatment (B) and year (C) considerable effect on the variation of the effectiveness have only the factors variant and days after treatment (Table 2). Including products with different mechanism of action in plant protection systems is a possibility to limit the risk of the emergence of resistance in the population of *T. absoluta* and a basis for the implementation of successful control.

Conclusion

Very good biological activity towards the larvae of tomato leaf miner (*Tuta absoluta* Meyrick) was established in products Avant 150 EC 250 ml/ha (E=79.38% 14th day after treatment) and Coragen 20 SC 0.018% (E=79.18% 14th day after treatment). It was established on the basis of a three-factor analysis of variance that only the factors variant and days of treatment exert an influence on the variation of effectiveness.

References

Table 2. Effect of the variation factors on the effectiveness of plant protection products against tomato leaf miner (*Tuta absoluta* Meyrick)

<table>
<thead>
<tr>
<th>Variation factors</th>
<th>Degree of freedom</th>
<th>Variance</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>MS</td>
<td>%</td>
</tr>
<tr>
<td>Product for plant protection (A)</td>
<td>5</td>
<td>1569.64***</td>
<td>26.41</td>
</tr>
<tr>
<td>Year (B)</td>
<td>1</td>
<td>119.75 **</td>
<td></td>
</tr>
<tr>
<td>Days after treatment (C)</td>
<td>2</td>
<td>4795.64***</td>
<td>32.27</td>
</tr>
<tr>
<td>Interaction A x B</td>
<td>5</td>
<td>87.09 **</td>
<td></td>
</tr>
<tr>
<td>Interaction A x C</td>
<td>10</td>
<td>148.83 **</td>
<td></td>
</tr>
<tr>
<td>Interaction B x C</td>
<td>2</td>
<td>0.02 **</td>
<td></td>
</tr>
<tr>
<td>Interaction A x B x C</td>
<td>10</td>
<td>46.82 **</td>
<td></td>
</tr>
<tr>
<td>Residuary</td>
<td>108</td>
<td>90.43 **</td>
<td></td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01, *** p<0.001, n.s. – non-significant
Brasiliera, 25, 164-169.
Collavino MD and Giménez RA, 2008. Efficacy imidacloprid to control the tomato borer (Tuta absoluta Meyrick). IDESIA (Chile), 26, 1, 65-72.
Faria CA, Torres JB, Fernandes AMV and Farias AMI, 2008. Parasitism of Tuta absoluta in tomato plants by Trichogramma pretosum Riley in response to host density and plant structures Ciência Rural, Santa Maria, 38, 6, 1504-1509.
Review

Fibromelanosis in domestic chickens
H. Lukanov, A. Genchev

Genetics and Breeding

Rumi and IPK Nelina – new cotton varieties
A. Stoilova, Hr. Meluca

Drying of seeds from common wheat (*Triticum aestivum* L.) by using Silica gel for *ex situ* storage
P. Chamurlyisky, N. Tsenov, S. Stoyanova

Breeding evaluation of newly stabilized lines of maize
V. Valkova

Apricot breeding for resistance to Sharka
V. Bozhkova, S. Milusheva

Dry matter accumulation in the varieties of wheat (*Triticum aestivum* L.) according to previous crop
A. Ivanova, N. Tsenov

Reproductive performance of weaning sows after treatment with Fertipig®
S. Dimitrov, G. Bonev

Reproductive performance of Polish Large White and Polish Landrace sows
B. Szostak, V. Katsarov

Nutrition and Physiology

Effect of the feeding of products stimulating the development of bee colonies
R. Shumkova, I. Zhelyazkova

Investigations on kidney function in mulard ducklings with experimental aflatoxicosis
I. Valchev, N. Grozova, L. Lazarov, D. Kanakov, Ts. Hristov, R. Binev, Y. Nikolov

Rumen fermentation in yearling rams fed different rations
V. Radev

Effect of different lipid and protein dietary levels on rumen ciliate fauna and cellulolytic activity in yearling rams
V. Radev, I. Varlyakov, R. Mihaylov
Production Systems

Efficacy and selectivity of antibroadleaved herbicides at durum wheat against volunteers of coriander, Clearfield canola, Clearfield sunflower and ExpressSun sunflower
G. Delchev

309

Investigations on friction coefficients of cow hooves with different dairy farm floor types
T. Penev, Z. Manolov, I. Borissov, V. Dimova, Tch. Miteva, Y. Mitev, V. Kirov

313

Productivity of irrigation cotton cultivated under different inter-row spaces
I. Saldzhiev, A. Muhova

318

Stability evaluation of mixtures among preparations with different biological effect on the basis of grain yield in spring vetch
G. Delchev, N. Georgieva, I. Nikolova

Agriculture and Environment

Changes of some agro-chemical parameters of Pellic Vertisol (FAO) soil type in growing cereal crops under organic system of agriculture
V. Koteva

322

Product Quality and Safety

Carcass composition and meat quality in lambs reared indoors and on pasture
T. Popova, P. Marinova

325

Fatty acids and lipid indices of buffalo milk yogurt
N. Naydenova, T. Iliev, G. Mihaylova

331

Effect of supplementary honey and artificial sugar feeding of bees on the composition of royal jelly
R. Balkanska, I. Zhelyazkova, M. Ignatova, B. Kashamov

335

Influence of the amount of milk clotting enzyme with microbial and camel origin on the coagulation time of cow’s milk
P. Panayotov, K. Yoanidu, P. Boyanova, B. Milenkov

339

Determining chlorophyll and carotenoid content in Bombyx mori L. excreta by Near Infrared Spectroscopy
S. Atanasova, M. Panayotov, D. Pavlov, M. Duleva

343
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letters/bold, 14/without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

