Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
AGRICULTURAL
SCIENCE AND TECHNOLOGY

2013

An International Journal Published by Faculty of Agriculture,
Trakia University, Stara Zagora, Bulgaria
Rumen fermentation in yearling rams fed different rations

V. Radev*

Department of Morphology, Physiology and Animal Nutrition, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

Abstract. To establish the effect of different dietary lipid and protein content on rumen fermentation in yearling rams, three rations have been tested. The main component in them was ground barley and meadow hay (ration I), plus a different lipid and protein source – sunflower meal (ration II) or sunflower expeller (ration III). Rations were offered twice a day – at 8:00 AM and 1:00 PM. Nine Blackhead Pleven yearling rams, weighing 45.2 kg at the beginning of the experiment were divided into 3 groups of 3 animals each. Twenty days prior to the trial, the animals were fitted with cannulae of the dorsal rumen sac. Rumen content was sampled for 4 consecutive days, three times a day: before feeding, 2.5 h and 5 h after feeding. The following parameters were investigated: pH, ammonia concentrations and volatile fatty acid concentrations. The addition of 0.200 kg sunflower meal (ration II) and 0.200 kg sunflower expeller (ration III) to baseline ration consisting of 1.0 kg meadow hay and 0.8 kg barley mash did not affect significantly rumen pH of yearling rams. For all three rations, rumen pH decreased considerably (p<0.001) 2.5 hours after feeding. Feeding rations with sunflower meal or sunflower expeller resulted in increased rumen ammonia concentrations both before (p<0.001, p<0.01), and after feeding (p<0.001, p<0.01). The highest levels of this parameter after feeding was observed for sunflower expeller ration. The total amount of volatile fatty acids in the rumen of experimental animals increased after feeding (p<0.05, p<0.01, p<0.001) for all rations tested. The relatively highest levels were established in the group fed sunflower meal-containing ration.

Keywords: rumen fermentation, sheep digestion, volatile fatty acids

Introduction

During the evolutionary development of ruminants, their digestive tract has improved and adapted for a maximum extent of breakdown and utilisation of rough plant feeds. Rumen microbial populations produce enzymes degrading almost all chemical bonds of polysaccharides of plant cell walls. As a result of the replication and metabolic activity of rumen microflora, polysaccharides and simpler sugars in plant feeds are converted to monosaccharides – mainly glucose. Volatile fatty acids (VFA), obtained from carbohydrate digestion in ruminants are the most important for energy metabolism. The amount of fatty acids produced in the fore stomachs of ruminants depends on several factors – type of the ration, ratio of feed ingredients, the sources of primary nutrients and their preliminary technological processing (Sivkova, 2007). Other factors are the age of animals, the size and activity of rumen microbial populations (Enev, 1996), dietary supplementation of nutritional preparations – biotechnological products (Radev, 1999), exogenous enzyme preparations (Sivkova, 2007) etc. Rumen parameters such as pH, osmotic pressure, carbohydrate level, have also an influence on total VFA concentrations (Sutton, 1981).

Ammonia is an end product of plant and animal protein degradation in the rumen and a source off amino acids synthesis for many rumen bacterial species. Its rumen concentrations vary within a large range. They are largely dependent on the extent of protein breakdown, metabolic activity of rumen microflora, evacuation rate of nutrient masses to the abomasum, the rate of absorption through the ruminal wall and the level of microbial protein synthesis (Hristov et al, 2005), which are particularly determined by the species, breed and age of the animal, ration composition, concentrate/roughage ratio, time and frequency of feeding etc. The hydrogen ions rumen concentrations (rumen pH) are strongly correlated to rumen VFA levels and total rumen ammonia concentrations.

Regardless of the existing sophisticated mechanisms for dietary energy transformation, the ingested feed is not completely utilised – a considerable part of the ration is lost as non-digested nutrient wastes with faeces, methane produced in the rumen and large intestine, thus increasing the interest of researchers to seek an efficient way for optimisation of digestion and intermediate metabolism, improvement of fattening potential and meat traits in ruminants with minimum feed expenditure. The modification of processes in the rumen could be successfully achieved by changing the dietary roughage/concentrate ratio, feeding rations that provide enough carbohydrates and protein to rumen microflora as well as finding optimal compositions of rations.

The purpose of this study was to investigate the effect of different levels lipid and protein content in ration on rumen fermentation in small ruminants through determination of main rumen fermentation indices – rumen pH, ammonia and volatile fatty acid concentrations.

Material and methods

An experiment was conducted to evaluate the effect of rations with different lipid and protein levels on rumen fermentation in the experimental base of the Animal Physiology unit to the Faculty of Agriculture, Trakia University, Stara Zagora. Three rations, conditionally termed ration I, ration II and ration III were tested. All they were based on ground barley and meadow hay (ration I). The others were supplemented with a different protein and lipid source – sunflower meal (ration II) or sunflower expeller (ration III) contained 1.00 kg meadow hay, 0.800 kg barley mash and 0.200 kg sunflower expeller. Rations were offered twice daily – 8:00 AM and 1:00 PM.
The chemical composition and amounts of rations is presented in Tables 1 and 2.

The experiment was performed with nine yearling rams from Blackhead Pleven breed, with initial average body weight 45.2 kg. They were divided in three groups of three animals each. The animals were housed indoor, in individual boxes with constant access to water and salt licks. Twenty days prior to the trial, the animals were fitted with cannulae of the dorsal rumen sac according to Aliev (1960). A 10-day adaptation period to the new ration was allowed.

Rumen content was sampled for 4 consecutive days, three times a day: before feeding, 2.5 h and 5 h after feeding for determination of hydrogen ions, volatile fatty acids and ammonia concentrations. Rumen content was collected with a 100-ml pipette, introduced always at the same depth through the cannula. Studied parameters were assayed according to routine methods as previously described (Radev, 1999).

The results of experiments were processed by Statistica for Windows software (Stat. Soft. Inc., 1994) and Microsoft Excel 2007. Graphs were built using Microsoft Excel 2007.

Table 1. Composition and amounts of consumed feed (ration I, II, and III)

<table>
<thead>
<tr>
<th>Feed</th>
<th>kg</th>
<th>DM intake kg</th>
<th>Ration I</th>
<th>Ration II</th>
<th>Ration III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meadow hay</td>
<td>1.00</td>
<td>0.882</td>
<td>90.3</td>
<td>283</td>
<td>19</td>
</tr>
<tr>
<td>Barley mash</td>
<td>1.00</td>
<td>0.899</td>
<td>96.0</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>2.00</td>
<td>1.781</td>
<td>186.3</td>
<td>333</td>
<td>36</td>
</tr>
<tr>
<td>Meadow hay</td>
<td>1.00</td>
<td>0.882</td>
<td>90.3</td>
<td>283</td>
<td>19</td>
</tr>
<tr>
<td>Barley mash</td>
<td>0.800</td>
<td>0.719</td>
<td>77.0</td>
<td>40</td>
<td>14</td>
</tr>
<tr>
<td>Sunflower meal</td>
<td>0.200</td>
<td>0.178</td>
<td>65.0</td>
<td>55</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>2.00</td>
<td>1.779</td>
<td>232.3</td>
<td>378</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 2. Chemical composition of feeds

<table>
<thead>
<tr>
<th>Feed</th>
<th>DM(%)</th>
<th>Crude protein</th>
<th>Crude fibre</th>
<th>Crude fat</th>
<th>NFE</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meadow hay</td>
<td>88.20</td>
<td>9.03</td>
<td>28.30</td>
<td>1.90</td>
<td>47.97</td>
<td>1.00</td>
</tr>
<tr>
<td>Barley mash</td>
<td>89.90</td>
<td>9.60</td>
<td>5.00</td>
<td>1.70</td>
<td>72.30</td>
<td>1.30</td>
</tr>
<tr>
<td>Sunflower meal</td>
<td>88.80</td>
<td>32.50</td>
<td>27.50</td>
<td>1.50</td>
<td>21.60</td>
<td>5.70</td>
</tr>
<tr>
<td>Sunflower expeller</td>
<td>89.70</td>
<td>31.10</td>
<td>16.90</td>
<td>8.80</td>
<td>26.70</td>
<td>6.20</td>
</tr>
</tbody>
</table>

Results and discussion

Rumen pH

Hydrogen ion concentrations in the rumen of experimental animals (pH) followed the classical trend to decrease (p<0.001, p<0.01) after feeding all tested rations (Figure 1). The pH of rumen contents is relatively constant. It varies between 5.4 and 7.4 (Peikov, 2001). It is maintained by the high buffering capacity of rumen content and the transportation of acid metabolites to the abomasum.

In this study, rumen pH values varied between 5.65 (5 hours after feeding) to 6.24 (before feeding). According to several researchers, rumen pH after intake of high-concentrate rations were between 5.6 and 6.2, with lower values when rapidly fermentable diets were offered (Krause et al., 1998, Beauchemin et al., 2000). The ruminination during the night and the excessive salivation resulted in higher pre-feeding morning rumen pH values. The fermentation of ingested feed led to lower pH values in post feeding animals (рН) followed the classical trend to decrease (р<0.001, р<0.01) after feeding all tested rations (Figure 1).

The pH of rumen relationship with all ration types. After feeding ration I composed of barley, meadow hay and sunflower meal, pre-feeding rumen pH was 6.24, whereas its values after feeding decreased to 5.95 by the 2.5th
hour (p<0.001) and to 5.88 (p<0.01) by the 5th hour. Before feeding ration III, average rumen pH was 6.26. Its values were statistically significantly lower 2.5 h after feed intake 5.75 (p<0.001). Five hours after feeding the ration with barley, meadow hay and sunflower expeller, rumen pH was still low 5.83 (p<0.001). Rumen pH values measured at studied intervals with all three rations were comparable regardless of their composition, decreasing in post-feeding hours (p<0.001, p<0.01). There were no statistically significant differences among rations at each time interval.

Ammonia concentrations

Rumen ammonia concentrations vary according to the ration type, the time and frequency of feed intake, the rate of enzymatic degradation of proteins and non-protein nitrogen compounds, the rate of ammonia uptake through the ruminal wall and the evacuation rate to the subsequent gastrointestinal tract compartments (Hristov et al., 2005). A number of authors have reported lower rumen ammonia concentrations after dietary supplementation with sugars (Obara et al., 1991) or starch (Rémont et al., 2002). Other however observed no influence of added sugar on rumen ammonia levels (McCormick et al., 2001, Sannes et al., 2002).

The results of the present study are somewhat similar to data of Hristov et al. (2005), who observed a reduction in rumen ammonia with rations supplemented either with glucose or starch and increased ammonia levels when both substances were added. The provision of easily fermentable foods in the view of authors lowers ammonia concentrations in the rumen due to reduction of formation rates or increased microbial protein synthesis. Beet, being an easily fermentable food, provides energy to microbial microflora and increased protein synthesis rate. The addition of sunflower meal to the ration maintained rumen ammonia levels between 8.42 mg/100 ml and 22.63 mg/100 ml. These levels, according to Awawdeh et al. (2005) are normal for fermentation and synthesis processes occurring into the rumen.

Figure 2 presents rumen ammonia concentrations in experimental yearling rams. Animals fed ration I had an average rumen ammonia pre-feeding level of 7.78 mg/100 ml. Two and a half hours later, the levels remained almost the same 7.79 mg/100 ml. At the later study period, rumen ammonia decreased insignificantly to 6.34 mg/100 ml. The initial rumen ammonia levels in animals fed ration II were 16.62 mg/100 ml. They decreased to 13.83 mg/100 ml 2.5 hours after feeding. Five hours after feeding the ration containing barley, meadow hay and sunflower meal (ration II), mean rumen ammonia concentrations were 8.07 mg/100 ml, i.e. statistically significantly lower (p<0.001). The pre-feeding rumen ammonia levels in the group fed sunflower expeller ration III were 12.98 mg/100 ml. This parameter increased (p<0.01) compared to respective values in group I. Two and a half hours after feeding, rumen ammonia increased to 15.74 mg/100 ml. The levels were again statistically significantly higher (p<0.001) compared to those after feeding ration I. Five hours after feeding ration III, rumen ammonia decreased to 10.43 mg/100 ml, values that were higher (p<0.05) compared to the levels by the 5th hours after ration I intake.

The established differences in rumen ammonia concentrations were most probably due to the different intensity of carbohydrate and protein breakdown after feeding the three rations, as well as the different rate of its utilisation by rumen microflora. The concentrations are also influenced by the intensity of ammonia absorption through the ruminal wall into the bloodstream. The highest observed rumen ammonia levels – after feeding ration II – is due to the sunflower meal as dietary protein source. Even the addition of sunflower expeller however (ration III) resulted in pre-feeding rumen ammonia concentrations higher by more than 5 mg/100 ml (p<0.01). A similar trend was present – decrease in post feeding hours with rations I and II, and increase 2.5 hours after feeding ration III.

Total volatile fatty acids

Data about the total amount of volatile fatty acids in the rumen are presented on Figure 3. The total VFA concentration before feeding ration I was 72.92 mmol/l. Two and half hours after feeding VFA levels increased significantly (p<0.05) to 93.65 mmol/l. At the later study interval they increased to 95.31 mmol/l (p<0.01).

The total amount of rumen VFA before intake of ration II was 73.54 mmol/l, which increased to 110.73 mmol/l 2.5 hours after the feeding (p<0.01). Five hours after feeding a ration with barley, meadow hay and sunflower meal (ration II), average rumen VFA concentration was 101.35 mmol/l. Unlike the level in the group fed ration I, feeding ration II resulted in lower VFA concentrations with time after the morning feeding of experimental yearling rams. The total amount of rumen VFA before feeding expeller-containing ration (ration III) was 72.80 mmol/l. With this ration too, rumen VFA increased (p<0.001) to 101.49 mmol/l. Two and a half hours after the morning feeding, the trend towards reduction in total VFA
The addition of 0.200 kg sunflower meal and 0.200 kg sunflower expeller to the base diet of 1.0 kg meadow hay and 0.8 kg barley mash did not alter significantly rumen pH of yearling rams. All three rations decreased rumen pH (p<0.001) 2.5 hours after feeding.

Feeding rations containing sunflower meal and expeller resulted in higher rumen ammonia concentrations both before (p<0.001: p<0.01: p<0.001), as well as after feeding (p<0.001: p<0.01). The highest levels of this parameter was observed with sunflower expeller ration.

The total volatile fatty acid content in the rumen of experimental animals increased (p<0.05: p<0.01: p<0.001) after feeding the three tested rations. The relatively highest rumen VFA concentrations were demonstrated after feeding the ration containing sunflower meal.

References

Enev E, 1994. Effect of rumen deamina on digestion and productivity of sheep. Thesis for DSc, Trakia University, Stara Zagora (Bg).

Sivkova K, 2007. Digestion processes in ruminants depending on ration composition and structure. Thesis for DSc, Trakia University, Stara Zagora (Bg).

CONTENTS

Review

Fibromelanosis in domestic chickens
H. Lukanov, A. Genchev 239

Genetics and Breeding

Rumi and IPK Nelina – new cotton varieties
A. Stoilova, Hr. Meluca 247

Drying of seeds from common wheat (Triticum aestivum L.) by using Silica gel for ex situ storage
P. Chamurlyisky, N. Tsenov, S. Stoyanova 252

Breeding evaluation of newly stabilized lines of maize
V. Valkova 257

Apricot breeding for resistance to Sharka
V. Bozhkova, S. Milusheva 261

Dry matter accumulation in the varieties of wheat (Triticum aestivum L.) according to previous crop
A. Ivanova, N. Tsenov 264

Reproductive performance of weaning sows after treatment with Fertipig®
S. Dimitrov, G. Bonev 269

Reproductive performance of Polish Large White and Polish Landrace sows
B. Szostak, V. Katsarov 272

Nutrition and Physiology

Effect of the feeding of products stimulating the development of bee colonies
R. Shumkova, I. Zhelyazkova 276

Investigations on kidney function in mulard ducklings with experimental aflatoxicosis
I. Valchev, N. Grozeva, L. Lazarov, D. Kanakov, Ts. Hristov, R. Binev, Y. Nikolov 282

Rumen fermentation in yearling rams fed different rations
V. Radev 290

Effect of different lipid and protein dietary levels on rumen ciliate fauna and cellulolytic activity in yearling rams
V. Radev, I. Varlyakov, R. Mihaylov 294
Production Systems

Efficacy and selectivity of antibroadleaved herbicides at durum wheat against volunteers of coriander, Clearfield canola, Clearfield sunflower and ExpressSun sunflower
G. Delchev

Investigations on friction coefficients of cow hooves with different dairy farm floor types
T. Penev, Z. Manolov, I. Borissov, V. Dimova, Tch. Miteva, Y. Mitev, V. Kirov

Productivity of irrigation cotton cultivated under different inter-row spaces
I. Saldzhiev, A. Muhova

Stability evaluation of mixtures among preparations with different biological effect on the basis of grain yield in spring vetch
G. Delchev, N. Georgieva, I. Nikolova

Biological activity of plant protection products against *Tuta absoluta* (Meyrick) in tomato grown in greenhouses
N. Valchev, V. Yankova, D. Markova

Agriculture and Environment

Changes of some agro-chemical parameters of *Pellic Vertisol* (FAO) soil type in growing cereal crops under organic system of agriculture
V. Koteva

Product Quality and Safety

Carcass composition and meat quality in lambs reared indoors and on pasture
T. Popova, P. Marinova

Fatty acids and lipid indices of buffalo milk yogurt
N. Naydenova, T. Iliev, G. Mihaylova

Effect of supplementary honey and artificial sugar feeding of bees on the composition of royal jelly
R. Balkanska, I. Zhelyazkova, M. Ignatova, B. Kashamov

Influence of the amount of milk clotting enzyme with microbial and camel origin on the coagulation time of cow's milk
P. Panayotov, K. Yoanidu, P. Boyanova, B. Milenkov

Determining chlorophyll and carotenoid content in *Bombyx mori* L. excreta by Near Infrared Spectroscopy
S. Atanasova, M. Panayotov, D. Pavlov, M. Duleva
Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be translated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What is the problem, what is new on the studied issue? What must answer the following questions: What is known and what is new on the studied issue? What is the problem, what is new on the studied issue? What is the problem? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable