Scope and policy of the journal
Agricultural Science and Technology /AST/ – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsveyanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
Reproductive performance of Polish Large White and Polish Landrace sows

B. Szostak1*, V. Katsarov2

1Department of Animal Keeping and Breeding, Faculty of Agricultural Science in Zamość, University of Life Sciences, 22-400 Lublin, Poland
2Department of Animal Science, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

Abstract. Analyses of traits were conducted on six farms breeding Polish Large White pigs and six breeding Polish Landrace pigs. Farms were selected for the analysis based on their similar environmental conditions and the average size of the sow herds, which ranged from 18.8 to 34.9 sows. The sows were housed in groups in pens with straw. The material for analysis consisted of data from breeding documentation covering the period of 2011–2012. The Polish Large White and Polish Landrace sows on the farms analysed were characterized by a high average number of piglets born alive per litter (11.5–13.3). The high variation in this parameter on many farms confirms that further selection is advisable. The average number of litters obtained per sow per year on most of the farms analysed was lower than in countries in which pig breeding is more advanced. In order to be competitive in pork production, breeders should try to improve the number of litters per sow per year. This can be achieved by means of early weaning of piglets and the earliest possible fertilization of sows after lactation. All of this, however, requires optimal living conditions for the animals and their overall well-being.

Keywords: sows, farrowing, piglets, litter

Introduction

The reproductive results of a herd of sows have a significant impact on the profitability of the entire pig breeding establishment (Okularczyk, 2004). For this reason the reproductive performance of sows is still a current subject of research and analysis. From an economic perspective, the chief aim in the reproductive performance of sows is to obtain as many piglets as possible per sow per year, which determines their production cost. The number of litters obtained per sow per year depends on the length of the farrowing interval. When these indicators are not monitored in the herd, the frequency of farrowing is reduced, while in countries in which pig breeding is more advanced the number of litters per sow per year ranges from 2.2 to 2.4 (Pejsak, 2012). Low reproductive utilization of sows in the herd is often caused by poor organization in the area of reproduction. Highly productive pig breeding enterprises wean from 20 to 26 piglets per sow per year, while the average in Poland is about 17 (Skormacki, 2008). In a study by Okularczyk (2004), a fecundity level below 16 piglets resulted in the highest costs of rearing piglets. The author considers this level of fecundity to be critically low, indicating that the sows should be culled from the herd. In terms of the economics of breeding, fecundity at a level of 16 piglets can be considered a threshold value, as the costs of producing one piglet at this level of fecundity were higher over the entire period of the study than market price quotations, i.e. they brought financial losses (Okularczyk, 2004).

Another trait that influences economic results in the herd is the sows’ age at first farrowing. First service either too early or too late is detrimental to production and can cause measurable economic losses in pig production. Mating gilts too early inhibits their somatic development, thus reducing their productivity and the length of their reproductive lives. On the other hand, beginning reproductive life too late increases the risk of problems with fertilization and raises the costs of keeping the animals. The age at which gilts reach breeding maturity depends on a number of factors. The most important of these include genotype, nutrition and housing system (Klocek, 1998; Walkiewicz et al., 1999; Szostak, 2001). Many authors (Matsyiak et al., 2007; Szostak and Przykaza, 2010) believe that the parameters (age and body weight) for a gilt beginning its reproductive life should be continually updated and adapted to the conditions of the farm on which it is kept. According to Katsarov et al. (2002), the number of unproductive days per sow per year depends mainly on the number of litters per sow per year and the length of the lactation period, while the number of piglets weaned per sow per year is correlated only with the number of litters obtained per year. The authors found that on large farms the percentage of sows that did not participate in reproduction ranged from 2.7 to 20.0%, mainly influenced by variation in the number of litters per sow per year.

The aim of the study was to analyse the age at first farrowing, number of piglets born alive per litter, length of the farrowing interval, and the number of litters per sow per year in Polish Large White and Polish Landrace sows.

Material and methods

An evaluation of the reproductive performance of Polish Large White and Polish Landrace sows was conducted based on the following traits: age at first farrowing, number of piglets born alive per litter, farrowing interval, and number of litters per sow per year. An analysis of these traits was conducted on six farms breeding Polish Large White pigs and six farms breeding Polish Landrace pigs. Farms were selected for the analysis based on their similar environmental conditions and the average size of the sow herds, which ranged from 18.8 to 34.9 sows. This breeding herd size is typical of farms in south-eastern Poland. The farms analysed are monitored by the Lublin branch of the Polish Pig Breeders and Producers Association “POLSUS”. The sows were housed in groups in pens with straw. They were fed according to norms developed for domesticated animals (Nawrocki and Grela, 2011).
The material for analysis consisted of data from breeding documentation covering the period of 2011–2012. Reproductive performance traits in the sows were characterized based on the arithmetical mean, standard deviation (SD) and the coefficient of variation (CV). The number of farrowings per sow per year was calculated by dividing the number of days in a year (365) by the length of the farrowing interval.

Results and discussion

The average age at first farrowing and the number of piglets born alive per litter in the Polish Large White sows are presented in Table 1. Analysis of the data concerning age at first farrowing in this breed reveals substantial variation. On one of the farms, the mean age at first farrowing was 313.3 days (farm 1), which was 62 days shorter than on farm 6. Sows on farm 1 were fertilized earliest, at an age of above 6.5 months.

Most specialists believe that a gilt should have its first litter before the age of 12 months. On one of the farms analysed this age was exceeded, as the average age at first farrowing was 375 days, which means that the gilts had been fertilized at an age of over 8.5 months. The possibility of lowering the age of sows at first service without negatively affecting their future productivity has been discussed by Kapelańska et al. (2001). Szulc et al. (2009) observed that litter size had a tendency to increase with the age of sows at first farrowing. Many authors claim that from an economic perspective the optimal time for the first service is between the ages of 200 and 260 days (Schukken et al; 1994; Xue et al; 1996). The average number of piglets born alive per litter was high, from 11.6 to 12.4. On one of the farms the coefficient of variation of this parameter was high (14.9-21.0%), which indicates that selection for fertility in sows is advisable. For the population of Polish Large White sows in the Lublin region, the average fertility in 2012 was 12.1, while the “POLSUS” (Mucha, 2012). These data indicate that the number of litters per sow per year in Polish Large White sows over the last two years was exceeded, as the average age at first farrowing was very low, at 298.7 days, which means that the Polish Landrace sows on this farm were fertilized just after they had reached the age of 6 months. On the remaining farms, the average age at first farrowing in sows of this breed ranged from 306.8 to 346.1 days.

Table 1. Age of the first farrowing and number of piglets born alive per litter in the Polish Large White sows

<table>
<thead>
<tr>
<th>Farms</th>
<th>Average number of sows</th>
<th>Age of the first farrowing (days)</th>
<th>Number of piglets born alive per litter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>CV (%)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>CV (%)</td>
</tr>
<tr>
<td>I</td>
<td>22.1</td>
<td>313.3</td>
<td>10.7</td>
</tr>
<tr>
<td>II</td>
<td>26.6</td>
<td>339.2</td>
<td>35.2</td>
</tr>
<tr>
<td>III</td>
<td>34.9</td>
<td>357.4</td>
<td>53.9</td>
</tr>
<tr>
<td>IV</td>
<td>33.2</td>
<td>358.3</td>
<td>39.0</td>
</tr>
<tr>
<td>V</td>
<td>24.3</td>
<td>333.6</td>
<td>38.9</td>
</tr>
<tr>
<td>VI</td>
<td>27.3</td>
<td>375.0</td>
<td>26.2</td>
</tr>
</tbody>
</table>

The average age at first farrowing and the average number of piglets born alive per litter in the Polish Landrace sows are presented in Table 3. On one of the farms analysed, the average age at first farrowing was very low, at 298.7 days, which means that the Polish Landrace sows on this farm were fertilized just after they had reached the age of 6 months. On the remaining farms, the average age at first farrowing in sows of this breed ranged from 306.8 to 346.1 days.

The Polish Landrace breed is characterized by early reproductive maturity, so the sows' first service at the age of 6–7 months did not negatively affect their further reproductive performance (Kapelańska et al., 2001).

Figure 1 illustrates the positive changes in age at first farrowing in Polish Large White and Polish Landrace sows over the last two years. The coefficient of variation of this trait, which on most of the farms analysed was over 10%, indicates that it could be further
The study showed variation in the age at first farrowing and the length of the farrowing interval in the Polish Large White and Polish Landrace sows raised on the farms analysed. These are traits which are to a large extent determined by the breeder, who decides on the age at which the gilt will be fertilized and on the length of the lactation period and open period, which make up the farrowing interval.

The Polish Large White and Polish Landrace sows on the farms analysed were characterized by a high average number of piglets born alive per litter (11.5–13.3). The high variation in this parameter on many farms confirms that further selection is advisable.

The average number of litters obtained per sow per year on most of the farms analysed was lower than in countries in which pig breeding is more advanced. In order to be competitive in pork production, breeders should try to improve the number of litters per sow per year. This can be achieved by means of early weaning of piglets and the earliest possible fertilization of sows after lactation. All of this, however, requires optimal living conditions for the animals improved by means of selection. The average number of piglets born alive per litter was high, from 11.5 to 13.3. The average number of piglets born alive per litter for the entire population of Polish Landrace sows in 2011 was 11.7 (Mucha, 2012).

The average length of the farrowing interval in the Polish Landrace sows on the farms analysed ranged from 159.8 to 194.7 days (Table 4.). On the farm with the shortest farrowing interval (159.8 days), a high number of litters per sow per year was obtained – 2.3. On the remaining farms, the number of litters per sow per year in Polish Landrace sows can also be considered high.

Analysis of the results of the swine evaluation contained in the Report on pig breeding in Poland (2012) reveals that farrowing interval length has shown a downward trend in all breeds bred in Poland. This is due to the high level of competition in the pork market both in the European Union and worldwide.

Conclusions

The study showed variation in the age at first farrowing and the length of the farrowing interval in the Polish Large White and Polish Landrace sows raised on the farms analysed. These are traits which are to a large extent determined by the breeder, who decides on the age at which the gilt will be fertilized and on the length of the lactation period and open period, which make up the farrowing interval.

The Polish Large White and Polish Landrace sows on the farms analysed were characterized by a high average number of piglets born alive per litter (11.5–13.3). The high variation in this parameter on many farms confirms that further selection is advisable.

The average number of litters obtained per sow per year on most of the farms analysed was lower than in countries in which pig breeding is more advanced. In order to be competitive in pork production, breeders should try to improve the number of litters per sow per year. This can be achieved by means of early weaning of piglets and the earliest possible fertilization of sows after lactation. All of this, however, requires optimal living conditions for the animals and their overall well-being.

References

Table 3. Age of the first farrowing and number of piglets born alive per litter in the Polish Landrace sows

<table>
<thead>
<tr>
<th>Farms</th>
<th>Average number of sows</th>
<th>Age of the first farrowing (days)</th>
<th>Number of piglets born alive per litter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>I</td>
<td>18.8</td>
<td>306.8</td>
<td>9.9</td>
</tr>
<tr>
<td>II</td>
<td>23.5</td>
<td>298.7</td>
<td>30.6</td>
</tr>
<tr>
<td>III</td>
<td>24.2</td>
<td>346.1</td>
<td>34.1</td>
</tr>
<tr>
<td>IV</td>
<td>31.4</td>
<td>320.8</td>
<td>24.3</td>
</tr>
<tr>
<td>V</td>
<td>26.0</td>
<td>335.5</td>
<td>31.8</td>
</tr>
<tr>
<td>VI</td>
<td>22.9</td>
<td>315.9</td>
<td>16.4</td>
</tr>
</tbody>
</table>

Table 4. Period of time between each farrowing and number of farrows from 1 sow in the year for Polish Landrace sows

<table>
<thead>
<tr>
<th>Farms</th>
<th>Average number of sows</th>
<th>Period of time between each farrowing (days)</th>
<th>Number of farrows from 1 sow in the year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>I</td>
<td>18.8</td>
<td>175.1</td>
<td>32.7</td>
</tr>
<tr>
<td>II</td>
<td>23.5</td>
<td>185.9</td>
<td>18.2</td>
</tr>
<tr>
<td>III</td>
<td>24.2</td>
<td>159.8</td>
<td>13.7</td>
</tr>
<tr>
<td>IV</td>
<td>31.4</td>
<td>194.7</td>
<td>18.7</td>
</tr>
<tr>
<td>V</td>
<td>26.0</td>
<td>191.3</td>
<td>22.7</td>
</tr>
<tr>
<td>VI</td>
<td>22.9</td>
<td>163.5</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Figure 1. The age of first farrowing of gilts Polish Large White and Polish Landrace breed in period 2011–2012 year at pig breed farms in Lublin province.

Review

Fibromelanosis in domestic chickens
H. Lukanov, A. Genchev

Genetics and Breeding

Rumi and IPK Nelina – new cotton varieties
A. Stoilova, Hr. Meluca

Drying of seeds from common wheat (Triticum aestivum L.) by using Silica gel for ex situ storage
P. Chamurryisky, N. Tsenov, S. Stoyanova

Breeding evaluation of newly stabilized lines of maize
V. Valkova

Apricot breeding for resistance to Sharka
V. Bozhkova, S. Milusheva

Dry matter accumulation in the varieties of wheat (Triticum aestivum L.) according to previous crop
A. Ivanova, N. Tsenov

Reproductive performance of weaning sows after treatment with Fertipig®
S. Dimitrov, G. Bonev

Reproductive performance of Polish Large White and Polish Landrace sows
B. Szostak, V. Katsarov

Nutrition and Physiology

Effect of the feeding of products stimulating the development of bee colonies
R. Shumkova, I. Zhelyazkova

Investigations on kidney function in mulard ducklings with experimental aflatoxicosis
I. Valchev, N. Grozeva, L. Lazarov, D. Kanakov, Ts. Hristov, R. Binev, Y. Nikolov

Rumen fermentation in yearling rams fed different rations
V. Radev

Effect of different lipid and protein dietary levels on rumen ciliate fauna and cellulolytic activity in yearling rams
V. Radev, I. Varlyakov, R. Mihaylov
CONTENTS

Production Systems

Efficacy and selectivity of antibroadleaved herbicides at durum wheat against volunteers of coriander, Clearfield canola, Clearfield sunflower and ExpressSun sunflower
G. Delchev

Investigations on friction coefficients of cow hooves with different dairy farm floor types
T. Penev, Z. Manolov, I. Borissov, V. Dimova, Tch. Miteva, Y. Mitev, V. Kirov

Productivity of irrigation cotton cultivated under different inter-row spaces
I. Saldzhiev, A. Muhova

Stability evaluation of mixtures among preparations with different biological effect on the basis of grain yield in spring vetch
G. Delchev, N. Georgieva, I. Nikolova

Biological activity of plant protection products against Tuta absoluta (Meyrick) in tomato grown in greenhouses
N. Valchev, V. Yankova, D. Markova

Agriculture and Environment

Changes of some agro-chemical parameters of Pellic Vertisol (FAO) soil type in growing cereal crops under organic system of agriculture
V. Koteva

Product Quality and Safety

Carcass composition and meat quality in lambs reared indoors and on pasture
T. Popova, P. Marinova

Fatty acids and lipid indices of buffalo milk yogurt
N. Naydenova, T. Iliev, G. Mihaylova

Effect of supplementary honey and artificial sugar feeding of bees on the composition of royal jelly
R. Balkanska, I. Zhelyazkova, M. Ignatova, B. Kashamov

Influence of the amount of milk clotting enzyme with microbial and camel origin on the coagulation time of cow’s milk
P. Panayotov, K. Yoanidu, P. Boyanova, B. Milenkov

Determining chlorophyll and carotenoid content in Bombyx mori L. excreta by Near Infrared Spectroscopy
S. Atanasova, M. Panayotov, D. Pavlov, M. Duleva
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letters/bold, 14/without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in color as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IXth International Conference on Production Diseases in Farm Animals, Sept.11 – 14, Berlin, Germany, p. 302 (Abstr.).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

In order to verify results.