Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330 +359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
AGRICULTURAL

SCIENCE AND TECHNOLOGY

2013

An International Journal Published by Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
Dry matter accumulation in the varieties of wheat (*Triticum aestivum* L.) according to previous crop

A. Ivanova*, N. Tsenov

Dobrudzha Agricultural Institute, 9520 General Toshevo, Bulgaria

Abstract. The constant interest in common wheat investigations is determined by the main share this crop has in agriculture and by the unique properties it possesses. This investigation was carried out under field conditions for a three-year period (2009 – 2011) in the trial field of Dobrudzha Agricultural Institute – General Toshevo (DAI). The trial was designed according to the split plot method in four replications, the size of the trial plot being 12 m². Five common wheat genotypes developed at DAI were subjected to investigation (Iveta, Enola, Pryaspa, Bolyarka, Dragana). The trial involved four previous crops: oilseed rape, pea, sunflower and maize, and three norms of mineral fertilization depending on the type of previous crop. Fertilization with phosphorus and potassium was used as a background (P₉K₉). nitrogen was tested at the following fertilizer norms: N₀, N₆, and N₁₂ kg/ha after previous crops oilseed rape, sunflower and maize, and N₀, N₆, and N₁₂ kg/ha after pea, with check variant N₉P₉K₉. The effect of the type of previous crop on dry matter accumulation in the investigated common wheat varieties was analyzed. It was found that dry matter accumulation continued throughout the entire growth season, the year conditions being decisive for its amount. Dry matter accumulation during the individual stages of growth and development was specific for each investigated cultivar. The investigated cultivars accumulated higher total biomass than the standard Pryaspa. After the early previous crops (oilseed rape and pea), the amounts of dry matter formed were higher at the end of the growth period (after heading). After the late previous crops (sunflower and maize) the new wheat varieties formed higher total biomass as early as the beginning of spring growth. After predecessor pea the highest amounts of dry matter were formed.

Keywords: wheat, previous crop, dry matter, accumulation

Introduction

Primary data on the accumulation of both dry matter and N at various growth stages are necessary to understand the processes of assimilation and partitioning of C and N in the context of plant growth and development (Corbellini and Bordghi, 1985; Cox et al., 1985; Papacosta and Gagianas, 1991; Dordas, 2009).

The relative importance of current assimilation and remobilization changes among genotypes is strongly related to agricultural factors (Éhdaie and Waines, 2001; Sabet et al., 2009). Moreover, in durum wheat stem carbohydrate reserves have been estimated to contribute 25% to 34% of the final grain yield under optimal growing conditions, while under drought or heat stress these parameters are expected to be greater (Arduini et al., 2006; Pampana et al., 2007; Ercoli et al., 2008). Research on comparison of the old and modern cultivars was mostly aimed at above ground dry matter, grain yield and its components (Charment et al., 2005). The higher biological potential of the grain yield of modern cultivars is attributed to plant height reduction and increasing biomass distribution into grain what was manifested in rapid increasing of the harvest index (Nankova et al., 2005; Pepo, 2005; Weisz et al., 2007). Sources of assimilates for grain formation can come from current assimilation from anthesis to maturity, but also from assimilates produced till anthesis and temporarily accumulated in vegetative organs (Uzik and Zořáfova, 2007; Fang et al., 2010).

The aim of this investigation was to determine the main effect of various previous crops on the accumulation of dry matter in the new common wheat genotypes in different phases of their ontogenetic development.

Material and methods

The investigation was carried out during 2009–2011 in the trial field of Dobrudzha Agricultural Institute – General Toshevo. Five common winter wheat varieties, developed in Dobrudzha Agricultural Institute, were studied, as follows – Iveta, Enola, Pryaspa, Bolyarka, Dragana. Pryaspa variety is used as a standard. The trial was designed by the split plot method in 4 replicates, the trial area being 12 m². The sowing was planned during the optimum for the region agricultural term with sowing norm 500 germinating seeds/m². The investigated genotypes were sown after four previous crops – rape, peas, sunflower and grain maize. The study included three levels of fertilization. Mineral fertilization was applied according to the type of the previous crop. Fertilization with phosphorus and potassium was background (P₉K₉) kg/ha and nitrogen fertilizer was tested at the following rates: N₀, N₆, and N₁₂ kg/ha after rape, sunflower and grain maize, N₀, N₆, and N₁₂ kg/ha after peas, with check variant N₉P₉K₉. Dry matter yield was determined separately by organs and as a sum in total biomass in t.ha⁻¹ in different phases of individual development of the studied varieties. The occurrence of phenological phases is registered by the scale of Zadoks et al. (1974):

- 26-29 – tillering
designated I phase
- 34-36 – stem elongation II phase
- 57-59 – heading III phase
- 69 – 10 days after heading IV phase
- 73 – 20 days after heading V phase
- 83 – 30 days after heading VI phase
- 94-95 – ripening VII phase

* e-mail: abivanova@abv.bg
The data were processed by analysis of the variance (ANOVA) and analyzed with Statistica 7. The means were compared using the LSD test. Dry matter yield of the new genotypes Iveta, Enola, Bolyarka and Dragana was calculated in percentage of standard Pryaspa.

Results

Wheat productivity is determined to a high extent by the accumulation of dry matter in the plant parts. The results from the multi factor analysis revealed that the main factors determining the formation of dry matter were the growth stage and the year conditions (Table 1). During the separate stages of their individual multi factor analysis revealed that the main factors determining the accumulation of dry matter in the plant parts. The results from the LSD test and analyzed with Statistica 7.

Table 1. ANOVA – main effects of factors

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig. (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>18</td>
<td>62756841.150</td>
<td>713.159</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>1</td>
<td>3120802952.562</td>
<td>35464.333</td>
<td>0.000</td>
</tr>
<tr>
<td>Phase</td>
<td>6</td>
<td>135308591.554</td>
<td>1537.626</td>
<td>0.000</td>
</tr>
<tr>
<td>Variety</td>
<td>4</td>
<td>520808.974</td>
<td>5.918</td>
<td>0.000</td>
</tr>
<tr>
<td>Previous crop</td>
<td>3</td>
<td>613905.093</td>
<td>6.976</td>
<td>0.000</td>
</tr>
<tr>
<td>Fertilization</td>
<td>3</td>
<td>11190098.421</td>
<td>127.163</td>
<td>0.000</td>
</tr>
<tr>
<td>Year</td>
<td>2</td>
<td>140138172.467</td>
<td>1592.509</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>3341</td>
<td>87998.354</td>
<td>87998.354</td>
<td>3360</td>
</tr>
</tbody>
</table>

The mean amounts of dry matter formed by the investigated wheat genotypes were different (Table 2). By their mean values, the varieties can be divided into separate statistical groups. Averaged for the entire growth period, variety Pryaspa formed the lowest total biomass. Varieties Iveta and Enola accumulated similar amounts of dry matter. Variety Dragana was referred to a separate group and variety Bolyarka demonstrated maximum amount of total biomass.

The type of previous crop also affected dry matter accumulation. Table 2 shows the mean amounts of total biomass depending on the type of previous crop, the other factors being presented as mean values. This trait clearly distinguished grain maize as a predecessor after which the investigated varieties accumulated the lowest total biomass, from peas, after which the formed total biomass reached a peak. Oilseed rape and sunflower had intermediate position, although sunflower accumulated more dry matter. The role of the previous crop has been considered in our previous investigations on wheat productivities, as well (Ivanova and Tsenov, 2010; Ivanova et al., 2011; Ivanova and Tsenov, 2012).

Table 2. Dry matter accumulation according to varieties and previous crops (t ha⁻¹)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Previous crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pryaspa</td>
<td>Grain maize</td>
</tr>
<tr>
<td>Enola</td>
<td>Rape</td>
</tr>
<tr>
<td>Iveta</td>
<td>Sunflower</td>
</tr>
<tr>
<td>Dragana</td>
<td>Peas</td>
</tr>
<tr>
<td>Bolyarka</td>
<td>1.006*</td>
</tr>
</tbody>
</table>

* Values with the same letter do not differ significantly

Discussion

Dry matter accumulation in winter wheat occurs till the end of the growth season but is the most intensive during the period from permanent spring vegetation till heading. The plants enter the period of spring vegetation with different contents of dry matter depending on the conditions during the preceding autumn and winter (Panayotova, 2004; Pepo, 2005). According to Gospodinov (1988) at tillering stage the growth and development of plants are more intensive after early previous crops (bean and wheat). Thus after previous crop oilseed rape varieties Bolyarka and Dragana formed higher total biomass at the beginning of spring vegetation in comparison to the standard Pryaspa, while varieties Iveta and Enola had significantly lower values (Figure 1). The maximum of accumulated dry matter of varieties Enola, Bolyarka and Dragana occurred 10 days after heading, and of variety Iveta it was 30 days after heading. From the beginning of spring vegetation till heading the new wheat cultivars accumulated total biomass similar to that of the standard. Variety Bolyarka formed markedly higher amounts of total biomass during the entire growth period as compared to the standard Pryaspa.

The investigated varieties accumulated different amounts of dry matter after previous crop pea (Figure 2). At the beginning of spring vegetation (Phase 1) the genotypes formed lower total biomass in comparison to the standard, with the exception of Bolyarka. With the progress of the growth season the new wheat varieties as a rule accumulated higher amounts of dry matter. Bolyarka and Enola reached a maximum at full maturity (phase VII), while variety Dragana marked a maximum 30 days after heading (phase VI). Variety Iveta was characterized by constant weight of the total biomass after heading. Cultivar Bolyarka was forming higher amounts of dry matter than the standard during the entire growth season.

According to Gospodinov (1988), the rate of organic matter accumulation is a little slower after sunflower and maize. After previous crop sunflower, the investigated varieties accumulated less dry matter than the standard at the beginning of spring vegetation (phase I) (Figure 3). In their further development (phases II, III and IV) Iveta, Enola and Bolyarka exceeded Pryaspa and formed total biomass many times higher than the standard, while at the end of the growth period (phases V and VI) these amounts became lower and closer to the standard. Iveta, Enola and Bolyarka reached a maximum at the second phase. At full maturity all cultivars accumulated more dry matter. Variety Dragana exhibited an interesting behavior by increasing its total biomass and reaching a maximum 10 days after heading (phase IV).

After previous crop maize dry matter accumulation was also variable in the respective varieties (Figure 4). At the beginning of
spring vegetation (phases I and II) they formed an amount of total biomass many times higher than the standard, while at heading stage these amounts sharply decreased. At the next stage, 10 days after heading (phase IV), varieties Bolyarka and Dragana, and 20 days after heading (phase V) varieties Iveta and Bolyarka formed more total biomass than Pryaspa. Thirty days after heading (phase VI) all genotypes again exceeded the standard by accumulated dry matter.

In spite of the high variation of the investigated trait as a result of the complex multi factor field trial, it was proved that each of the investigated cultivars accumulated specific amounts of biomass in each individual stage in direct relation to the previous crop. This direct effect was the reason for the different ratios of biomass between the varieties at each stage and between the stages within the same previous crop.

After the early previous crops oilseed rape and peas, dry matter accumulation in the varieties was similar to the model variety Pryaspa (with the exception of variety Bolyarka), then gradually increased to reach a maximum 10 days after heading (phase IV). At this phase all varieties had more dry matter than the standard. Variety Dragana was an exception, having significantly less dry matter than Pryaspa at phases I and II, but at phase IV already
exceeded it many times. During the next phases (V-VI) the tendency remained more or less stable, with the exception of variety Enola at phases V and VI after oilseed rape. Variety Bolyarka demonstrated different behavior. During all phases after both previous crops it accumulated significantly more dry matter than the standard (Bourgeois and Entz, 1996; Anderson, 2008). Ratios between dry matter of the varieties and the standard varied strongly over phases (Rieger et al., 2008; Zhemela and Kurochka, 2012).

After the late previous crops sunflower and grain maize, the amount of dry matter in the varieties over phases was analogous during the first four phases. The peculiarity here was that at the second phase the rate of accumulation was very intensive, while it became significantly slower in the third stage approximating the respective stages of growth and development was specific for each investigated variety. It is probably affected not only by the

Figure 3. Dry matter accumulation after sunflower

Figure 4. Dry matter accumulation after grain maize

investigated factors but also by the specific combinations of temperature and moisture reserves in soil during the respective seasons. The high significance of the factor year should be further analyzed in more details to more thoroughly clarify the dynamics of dry matter accumulation in each variety. Furthermore, the varieties were selected with differences in their earliness (early: Enola and Iveta; medium early: Bolyarka and Pryaspa; late: Dragana), and in their stem height (short-stemmed: Enola and Dragana; medium high: Bolyarka and Pryaspa; high-stemmed: Iveta). Although it was not discussed here, this inevitably affected dry matter accumulation. Variety Pryaspa, which is used as a standard of productivity, can be involved as a model cultivar in similar investigations in the future as well.

Conclusion

Dry matter accumulation continued throughout the entire growth period, the effect of the year conditions being decisive for its amount. During their growth period, the new varieties Iveta, Enola, Bolyarka and Dragana accumulated higher total biomass than the standard Pryaspa.

After the early predecessors (oilseed rape and pea), the amounts of formed dry matter were higher at the end of vegetation (after heading), being maximum after peas. After the late predecessors (sunflower and maize), the new wheat varieties formed higher total biomass as early as the beginning of spring vegetation.

References

Panayotova G, 2004. Dry matter accumulation in durum wheat variety Progress depending on the level of nitrogen nutrition. Field Crops Studies, 1, 2, 305-311.

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review</td>
<td>Fibromelanosis in domestic chickens</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>H. Lukanov, A. Genchev</td>
<td></td>
</tr>
<tr>
<td>Genetics and Breeding</td>
<td>Rumi and IPK Nelina – new cotton varieties</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>A. Stoilova, Hr. Meluca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drying of seeds from common wheat (Triticum aestivum L.) by using Silica gel for ex situ storage</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>P. Chamurlyisky, N. Tsenov, S. Stoyanova</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breeding evaluation of newly stabilized lines of maize</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>V. Valkova</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apricot breeding for resistance to Sharka</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>V. Bozhkova, S. Milusheva</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry matter accumulation in the varieties of wheat (Triticum aestivum L.) according to previous crop</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>A. Ivanova, N. Tsenov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reproductive performance of weaning sows after treatment with Fertipig®</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>S. Dimitrov, G. Bonev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reproductive performance of Polish Large White and Polish Landrace sows</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>B. Szostak, V. Katsarov</td>
<td></td>
</tr>
<tr>
<td>Nutrition and Physiology</td>
<td>Effect of the feeding of products stimulating the development of bee colonies</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>R. Shumkova, I. Zhelyazkova</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investigations on kidney function in mulard ducklings with experimental aflatoxicosis</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>I. Valchev, N. Grozeva, L. Lazarov, D. Kanakov, Ts. Hristov, R. Binev, Y. Nikolov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rumen fermentation in yearling rams fed different rations</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>V. Radev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of different lipid and protein dietary levels on rumen ciliate fauna and cellulolytic activity in yearling rams</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>V. Radev, I. Varlyakov, R. Mihaylov</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

Production Systems

Efficacy and selectivity of antifluid herbicides at durum wheat against volunteers of coriander, Clearfield canola, Clearfield sunflower and ExpressSun sunflower
G. Delchev

Investigations on friction coefficients of cow hooves with different dairy farm floor types
T. Penev, Z. Manolov, I. Borissov, V. Dimova, Tch. Miteva, Y. Mitev, V. Kirov

Productivity of irrigation cotton cultivated under different inter-row spaces
I. Saldzhiev, A. Muhova

Stability evaluation of mixtures among preparations with different biological effect on the basis of grain yield in spring vetch
G. Delchev, N. Georgieva, I. Nikolova

Biological activity of plant protection products against Tuta absoluta (Meyrick) in tomato grown in greenhouses
N. Valchev, V. Yankova, D. Markova

Agriculture and Environment

Changes of some agro-chemical parameters of Pellic Vertisol (FAO) soil type in growing cereal crops under organic system of agriculture
V. Koteva

Product Quality and Safety

Carcass composition and meat quality in lambs reared indoors and on pasture
T. Popova, P. Marinova

Fatty acids and lipid indices of buffalo milk yogurt
N. Naydenova, T. Iliev, G. Mihaylova

Effect of supplementary honey and artificial sugar feeding of bees on the composition of royal jelly
R. Balkanska, I. Zhelyazkova, M. Ignatova, B. Kashamov

Influence of the amount of milk clotting enzyme with microbial and camel origin on the coagulation time of cow’s milk
P. Panayotov, K. Yoanidu, P. Boyanova, B. Milenkov

Determining chlorophyll and carotenoid content in Bombyx mori L. excreta by Near Infrared Spectroscopy
S. Atanasova, M. Panayotov, D. Pavlov, M. Duleva
Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable