Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. Each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student’s campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
+359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg

Editor-in-Chief
Tsanko Yablanski
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Co-Editor-in-Chief
Radoslav Slavov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections
Genetics and Breeding
Atanas Atanasov (Bulgaria)
Ihsan Soysal (Turkey)
Max Rothschild (USA)
Stoicho Metodiev (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Zervas Georgios (Greece)
Ivan Varlyakov (Bulgaria)

Production Systems
Dimitar Pavlov (Bulgaria)
Dimitar Panaiotov (Bulgaria)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Georgi Petkov (Bulgaria)
Ramesh Kanwar (USA)

Product Quality and Safety
Marin Kabakchiev (Bulgaria)
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)

English Editor
Yanka Ivanova (Bulgaria)
Production Systems

Cultivation of *Scenedesmus dimorphus* strain for biofuel production

K. Velichkova*, I. Sirakov, G. Georgiev

1Department of Biology and Aquaculture, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

Abstract. Microalgae have several advantages, including higher photosynthetic efficiency as well as higher growth rates and higher biomass production compared to other energy crops. The *Scenedesmus dimorphus* strain was studied by using two media – BBM and 3N-BBM, and its potential for biofuel production was established. The temperature varied between 25 – 27ºC during the experiment. Fluorescent light was used to assure optimal light condition and a photoperiod of 15/9h light and dark cycle was maintained. The duration of the experiment was 25 days. Dry weight, optical density, chlorophyll, carotenoids and total lipids were measured for the biomass evaluation. The received results showed that the maximum vegetative growth was reached after approximately 16 days of incubation. The maximum growth rate during this period was 1.690 mg.l\(^{-1}\) dry weight in 3N-BBM medium, and in BBM medium – 0.960 mg.l\(^{-1}\). The lipid content which we received from the examined strain was 21.6% in BBM medium, and in 3N-BBM – 18.5%.

Keywords: biofuel, biomass, media, *Scenedesmus dimorphus*

Introduction

Biofuel can be produced from a variety of sources, including plants (bio-ethanol from corn, canola), bacteria (bio-hydrogen from microbial fuel cells using *Geobacter* sp.), microalgae (biodiesel, bio-oil and bio-hydrogen from *Chlorella, Scenedesmus* and *Botryococcus*) and solid wastes (biogas from anaerobic digestion). Among these, microalgae look promising as a versatile, environmentally friendly and economically sustainable solution (Hutchinson, 2007).

Microalgae can provide feedstock for several different types of renewable fuels such as biodiesel, methane, hydrogen, ethanol, among others. Algae biodiesel contains no sulfur and performs as well as petroleum diesel, while reducing emissions of particulate matter, CO and hydrocarbons (Delucchi, 2003).

High lipid contents are usually produced under environmental stress, typical nutrient limitation, which is often associated with relatively low biomass productivities and, therefore, low overall lipid productivity (Li et al., 2008). The lipid content of microalgae could be increased by various cultivation strategies, such as nitrogen depletion (Li et al., 2008), phosphate limitation (Reitan et al., 1994), high salinity (Rao et al., 2007), and high iron concentration (Liu et al., 2008). Micro algae have several advantages, including higher photosynthetic efficiency as well as higher growth rates and higher biomass production compared to other energy crops. Several microalgae strains have been reported (Pulz and Gross, 2004; Rodolfi et al., 2009; Radakovits et al., 2011; Mc Donald, 2011) to have the ability to accumulate large quantities of lipids: *Scenedesmus dimorphus, Botryococcus braunii, Nannochloropsis oculata, Phaeodactylum tricornutum, Chlorella protothecoides*. According to Becker (1994) *S. dimorphus* contains 16–40% lipid on dry weight basis. In light of this meaning, the potential biotechnological applications of microalgae growth and lipid production characteristics need to be explored. Different nutritional and environmental factors, cultivation conditions and growth phases may affect the fatty acid composition. The main effect on growth enhancement could be attributed to the initial content of some macro and micro-nutrients especially carbon and nitrogen.

The aim of our research was to compare the growth and lipid content of *Scenedesmus dimorphus* (SKU: AC-1002) strain cultivated in two nutrition media in connection of its use for biofuel production.

Materials and methods

Microalgae strain and medium

Scenedesmus dimorphus (SKU: AC-1002) was purchased from Algae depot – USA (www.algaedepot.com). *S. dimorphus* was grown on two types of media: BBM medium (http://www.ccap.ac.uk/media/documents/BB_000.pdf): NaNO\(_3\) – 10.0 g, MgSO\(_4\).7H\(_2\)O – 3.0 g, NaCl – 1.0 g, K\(_2\)HPO\(_4\) – 3.0 g, KH\(_2\)PO\(_4\) – 7.0 g, CaCl\(_2\).2H\(_2\)O – 1.0 g (stocks per 400 ml); ZnSO\(_4\).7H\(_2\)O – 8.82 g, MnCl\(_2\).4H\(_2\)O – 1.44 g, MoO\(_3\) – 0.71 g, CuSO\(_4\).5H\(_2\)O – 1.57 g, Co(NO\(_3\))\(_2\).6H\(_2\)O – 0.49 g (trace elements solution per litre); EDTANa\(_2\) – 5.0 g, FeSO\(_4\).7H\(_2\)O – 4.98 g.

3N-Bold’s basal medium with added vitamins according to the recipe provided on the CCAP website (http://www.ccap.ac.uk/media/documents/3N_BBmV_000.pdf): NaNO\(_3\) – 25.0 g, MgSO\(_4\).7H\(_2\)O – 7.5 g, NaCl – 1.0 g, K\(_2\)HPO\(_4\) – 17.5 g, NaCl – 2.5 g (stocks per 1000 ml); ZnCl\(_2\) – 5.0 mg, FeCl\(_3\).6H\(_2\)O – 97.0 mg, MnCl\(_2\).4H\(_2\)O – 41.0 mg, Na\(_2\)MoO\(_4\).2H\(_2\)O – 4. mg, CoCl\(_2\).6H\(_2\)O – 2.0 mg (trace elements solution per litre); EDTANa\(_2\) – 0.75 g, vitamins B\(_1\) – 0.12 g and B\(_6\) – 0.1 g.

Cultivation

The cells in exponential period were inoculated (10%, v/v) in a
liquid medium. Cultivation was initiated in a 500ml Erlenmeyer flask containing 400ml medium. The cultures were kept at room temperature (25–27°C) in fluorescent light with a light:dark photoperiod of 15 h: 9 h. Sterile-air containing 2% (v/v) CO₂ was aerated into the flask through an air sparger at the bottom of the flask. The cultures were kept at room temperature (25–27ºC) in fluorescent light with a light:dark photoperiod of 15 h: 9 h.

Sterile-air containing 2% (v/v) CO₂ was aerated into the flask through an air sparger at the bottom of the flask. The strains were checked for 25 days growth period. All experiments were conducted in duplicates (BBM medium – bb and bb1; 3N-BBM medium – 3N and 3N1).

Lipid content

The total lipids were extracted from microalgae biomass using a modified method of Bligh and Dyer (1959). The lipids were extracted using a mixture of chloroform/methanol (1:2 v/v). The quantity of lipid residue was measured gravimetrically and expressed as dry weight percentage.

Data analyses were conducted by using ANOVA (MS Office, 2010).

Results and discussion

Like other microalgae, *S. dimorphus* culture requires water, light, CO₂, and inorganic nutrients. Culture productivity is affected by factors such as pH, CO₂, irradiance, salinity, and temperature (Banerjee et al., 2002). According to Lupi et al. (1991) the optimum temperature for growth is 25°C. The temperature was held between 25–27°C during the experiment.

In our study as we expected the cultures grown in the BBM medium have lower values of optical density than the cultures grown in the medium with three times more nitrates (3N-BBM). The maximum values of the optical density at *S. dimorphus* grown in 3N-BBM medium was 1.89 compared with BBM medium where it was 1.53 (Figure 1). The medium enriched with higher nitrates content showed better algae’s culture growth compared with BBM. According to Ilavarasi et al. (2011) *Scenedesmus* sp. (NTAI03) showed maximum growth in Bold’s Basal medium, based on the optical density measurement.

Maximum dry biomass (1.690 mg.l⁻¹) of *S. dimorphus* was obtained in medium enriched with nitrates (Figure 2), in comparison with its dry weight in BBM medium (0.960 mg.l⁻¹) (Table 1). The received results showed that the maximum vegetative growth was reached after approximately 16 days of incubation. According to Goswami and Kailita (2011) the maximum increase in biomass per day for *Scenedesmus dimorphus* was found to be 1.523 mg/l/day. Varsharani and Getta (2011) reported dry biomass concentration of 1.200 mg.l⁻¹.

Growth measurements

The growth of *S. dimorphus* was measured via spectrophotometry (DR 2800) and biomass dry weight. Optical density for biomass factor was determined at wavelength 550 nm. One ml of the sample was appropriately diluted with deionized water and the absorbance of the sample was read at 550 nm.

The cultures were determined gravimetrically and growth was expressed in terms of dry weight (mg/l) (Rao et al., 2007). The cultures were harvested by centrifugation at 3,000 x g for 10 min and the cells were washed with distilled water. Then the pellet was freeze dried. The dry weight of algal biomass was determined gravimetrically and growth was expressed in terms of dry weight (mg.l⁻¹).

Chlorophyll and carotenoid content

The isolation of pigments from algae cells included the following procedures: harvesting 2 ml of microalgae cells by centrifugation at 10000 rpm, two times for 3 min and discarding the supernatant, suspension of cells in 2 ml methanol/water 90:10 v/v and mixing of Vortex for 1 min, heating of the suspension for half an hour in a water bath at 60°C, cooling the samples at room temperature, centrifugating the suspension (10000 rpm for 3 min) and discarding the supernatant with dissolved pigments. The absorbance of the pigment extract (665, 652 nm for chlorophyll content (a+b) and 470, 666nm for carotenoids content) was recorded by using a spectrophotometer. The chlorophyll content was computed (mg.l⁻¹) according to Porra et al. (1989) and carotenoid content was computed (mg.l⁻¹) according to Lichtenthaler (1987).

![Figure 1. Growth response of S. dimorphus (at 550nm) for 25 days under different media](image)

Table 1. Growth, chlorophyll, and carotenoid content of *S. dimorphus* grown in different media.
In the accounting for chlorophyll of *S. dimorphus* again higher values (9.6 mg.l⁻¹) occurred in cultures grown in 3N-BBM medium (Figure 3) (Table 1). Varsharani and Geeta (2011) reported chlorophyll (a+b) concentration - 11.5 mg.l⁻¹ in *S. dimorphus*. Prabakaran and Ravindran (2012) received higher values of chlorophyll in *S. dimorphus* grown in nitrogen sources and carbon source in different concentrations.

Different hypothesis on carotenoid accumulation by green microalgae were mentioned by scientists. Previous studies on carotenoid accumulation by *Scenedesmus*, *Chlorella* and *Haematococcus* showed that the addition of at least 10% of nutrients mainly nitrogen are required to overcome the dry weight accumulation failure (El-Shafey et al., 1999). The main reason could be ascribed to the presence of organic carbon that allows the fast carotenoid accumulation (El-Sayed, 2010). In our study the carotenoids of *S. dimorphus* were again with higher values (2.3 mg.l⁻¹) in cultures grown in medium enriched with nitrates (Figure 4).

According to Goswami and Kalita (2011) the maximum increase

Table 1. Optical density, dry weight, chlorophyll and carotenoid of *S. dimorphus* grown of different media (BBM, 3N-BBM)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>S. dimorphus BBM</th>
<th></th>
<th>S. dimorphus 3N-BBM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>MEAN ± SEM</td>
<td>Min</td>
</tr>
<tr>
<td>Optical density</td>
<td>0.23</td>
<td>1.53</td>
<td>0.96 ± 0.15</td>
<td>0.21</td>
</tr>
<tr>
<td>Dry weight (mg.l⁻¹)</td>
<td>116</td>
<td>920</td>
<td>558.22 ± 9.12</td>
<td>260</td>
</tr>
<tr>
<td>Chlorophyll a+b (mg.l⁻¹)</td>
<td>0.40</td>
<td>5.50</td>
<td>2.91 ± 3.49</td>
<td>0.45</td>
</tr>
<tr>
<td>Carotenoid (mg.l⁻¹)</td>
<td>0.12</td>
<td>1.60</td>
<td>0.74 ± 0.26</td>
<td>0.10</td>
</tr>
</tbody>
</table>

*P<0.05
in biomass per day and lipid content for *S. dimorphus* was found to be 1.523 mg/l/day and 34%. Our results about total lipids were: for *S. dimorphus* grown in BBM – 21.6%; *S. dimorphus* grown in 3N-BBM – 18.5%. This was probably due to the fact that in these media there was depletion of nutrients at much earlier stage compared to the media enriched with nitrogen. The cells stopped dividing and began to accumulate spare products in the form of fatty acids and glycerol, which were connected by triglyceride. In the 3N-BBM medium nutrients were still not the limiting factor for cell division, and the energy and building blocks were redirected in the direction of growth and division of cells rather than the accumulation of spare products.

![Figure 4. Carotenoid (mg.l⁻¹) of *S. dimorphus* for 25 days grown in different media](image)

Conclusion

The obtained results showed that the researched strain of *S. dimorphus* developed better in 3N-BBM, as larger values were observed in the biomass, but the percentage of lipids was better in BBM. Chlorophyll content in all cultures followed the dynamics of variation of the curves of growth. Carotenoid content had the same character, and it was five times less than chlorophyll.

References

Review

Trends in battery cage husbandry systems for laying hens. Enriched cages for housing laying hens
H. Lukanov, D. Alexieva

Genetics and Breeding

Influence of environments on the amount and stability of grain yield in modern winter wheat cultivars
I. Interaction and degree of variability
N. Tsenov, D. Atanasova

Variation of yield components in coriander (Coriandrum Sativum L.)
N. Dyalgerov, B. Dyalgerova

Nutrition and Physiology

Plant cell walls fiber component analysis and digestibility of birdsfoot trefoil (Lotus corniculatus L.) in the vegetation
Y. Naydenova, A. Kyuchukova, D. Pavlov

Functional properties of maltitol
V. Dobreva, M. Hadjikinova, A. Slavov, D. Hadjikinov, G. Dobrev, B. Zhekova

Food spectrum of grey mullet (Mugil cephalus L.) along the Bulgarian Black Sea coast
R. Bekova, G. Raikova-Petrova, D. Gerdzhikov, E. Petrova, V. Vachkova, D. Klisarova

Metabolic and enzymatic profile of sheep fed on forage treated with the synthetic pyrethroid Supersect 10 EC
R. Ivanova

Production Systems

Cultivation of Scenedesmus dimorphus strain for biofuel production
K. Velichkova, I. Sirakov, G. Georgiev

Study of the effect of soil trampling on the structural elements of yield and productivity of soybean
V. Sabev, S. Raykov, V. Arnaudov

Stability of herbicides and herbicide tank-mixtures at winter oilseed canola by influence of different meteorological conditions
G. Delchev

Screening of plant protection products against downy mildew on cucumbers (Pseudoperonospora Cubensis (Berkeley & M. A. Curtis) Rostovzev) in cultivation facilities
S. Masheva, N. Velkov, N. Valchev, V. Yankova
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy and selectivity of vegetation-applied herbicides and their mixtures with growth stimulator Amalgerol premium at oil-bearing sunflower grown by conventional, Clearfield and ExpressSun technologies</td>
<td>200</td>
</tr>
<tr>
<td>G. Delchev</td>
<td></td>
</tr>
<tr>
<td>Agriculture and Environment</td>
<td></td>
</tr>
<tr>
<td>Manganese levels in water, sediment and algae from waterbodies with high anthropogenic impact</td>
<td>206</td>
</tr>
<tr>
<td>V. Atanasov, E. Valkova, G. Kostadinova, G. Petkov, Ts. Yablanski, P. Valkova, D. Dermendijeva</td>
<td></td>
</tr>
<tr>
<td>Seasonal and vertical dynamics of the water temperature and oxygen content in Kardzhali reservoir, Bulgaria</td>
<td>212</td>
</tr>
<tr>
<td>I. Iliev, L. Hadjinikolova</td>
<td></td>
</tr>
<tr>
<td>Condition and changes in types of natural pasture swards in the Sakar mountain under the influence of climatic and geographic factors</td>
<td>216</td>
</tr>
<tr>
<td>V. Vateva, K Stoeva, D. Pavlov</td>
<td></td>
</tr>
<tr>
<td>Product Quality and Safety</td>
<td></td>
</tr>
<tr>
<td>Comparative studies on the gross composition of White brined cheese and its imitations, marketed in the town of Stara Zagora</td>
<td>221</td>
</tr>
<tr>
<td>N. Naydenova, T. Iliev, G. Mihaylova, S. Atanasova</td>
<td></td>
</tr>
<tr>
<td>Effect of the environment on the quality of flour from common winter wheat cultivars</td>
<td>230</td>
</tr>
<tr>
<td>I. Stoeva, E. Penchev</td>
<td></td>
</tr>
</tbody>
</table>
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transcribed to Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings:
Author(s) surname and initials, year. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows. IXth International Conference on Production Diseases in Farm Animals, Sept. 11 – 14, Berlin, Germany, p. 302 (Abstr.).

Thesis:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.