Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student’s campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 694446
E-mail: ascitech@uni-sz.bg
Variation of yield components in coriander (Coriandrum Sativum L.)

N. Dyulgerov*, B. Dyulgerova

Institute of Agriculture, 8400 Karnobat, Bulgaria

Abstract. The aim of the present study was to generate information on variation of some important yield components in a coriander collection. The study was conducted in the Institute of Agriculture - Karnobat, during the period 2008-2010 and included 81 coriander accessions. The experiment was laid out in a randomised complete block design with three replications. Ten plants were randomly selected from each plot and data were collected for plant height, number of branches per plant, number of umbels per plant, number of fruits per umbel, fruit weight per umbel, 1000-fruits weight and fruit weight per plant. A large variation was observed for most of the studied traits. Suitable accessions for future use in coriander breeding program were identified.

Keywords: coriander, yield components, variation

Introduction

Coriander (Coriandrum sativum L.) is an annual spice herb that belongs to the family of Umbelliferae/Apiciaceae. It is used as a spice in culinary, medicine and in perfumery, food, beverage, and pharmaceuticals industries (Diederichsen, 1996; Jansen, 1981). Although coriander has got diverse uses the knowledge on the extent and magnitude of genetic variability of agronomic and quality traits is limited. The existence of sufficient level of genetic variability is a prerequisite for variety development and therefore detailed evaluation of the accessions for different morphological, agronomic and quality traits is necessary in order to identify accessions with useful traits for improvement programs.

This study was designed to assess the variation that exists in coriander accessions for some important yield components.

Material and methods

The study was conducted in the Institute of Agriculture, Karnobat, during the period 2008–2010 and included 81 coriander accessions. The experiment was laid out in a randomized complete block design with three replications. Spacing between plants and rows were kept as 15 and 30 cm, respectively. At maturity ten plants were randomly selected from each plot and data were collected for plant height, number of branches per plant, number of umbels per plant, number of fruits per umbel, fruit weight per umbel, 1000-fruits weight and fruit weight per plant.

Accession means were used to calculate the mean, minimum, maximum, range and coefficient of variation (CV) for each trait. For analysis of stability of studied traits in different years of testing GGE biplots were used. The GGE biplots were computed in GenStat (Payne et al., 2007).

Results and discussion

A large variation was observed for most of the characters studied in germplasm accessions (Table 1). Plant height ranged from 48.67 to 101.67 cm and was the lowest variatied trait with a CV 13.77 per cent. The mean number of branches per plant was 7.81 and varied from 5 to 12 branches in different accessions. Number of umbel per a plant ranged from 11.00 to 40.67 and CV was 30.30 per cent. Number of fruits per umbel varied from 17.00 to 58.00 and with a CV of 24.04 per cent. Coriander accessions showed wide variation in fruit weight per a umbrel ranged from 0.06 g to 0.51 g and CV was 43.17 per cent. 1000-fruits weight also showed wide range of 3.52 g to 13.13 g with a CV of 34.85. The means observed in this

* e-mail: nikolaydyulgerov@gmail.com
Even though plant height may not be considered strictly as a "yield component," there is data in literature that plant height was tightly associated with plant yield and with all yield determinants (Diederichsen, 1996; El-Ballal and Abou El-Nasr, 1987). Contrariwise, reducing plant height allows producers to seed at higher rates, makes cultivation practices easier, and strengthens stems, preventing lodging. Therefore, suitable for breeding purpose were accessions 25, 48, 55, 56, 58 with plant height about 70–80 cm and most stable for this trait (Figure 1). In contrast, the 33, 57, 6, 27 were the least stable accessions for plant height.

The biplot for number of branches per plant (Figure 2) indicates that the 41, 44, 4, 10 are the accessions with the highest average number of branches per plant and relatively good stability. Accessions 38, 72, 71, 54, 60 have stable and high number of umbels per plant (Figure 3). Accessions 67, 61, 10, 79 also have high number of umbels per plant but low stability in different environments.

Traits number of branches per plant and branches per plant in coriander breeding are in particular interest in coriander breeding because correlation and path coefficient analysis indicated that this traits were ones of the most important traits as they exerted positive direct effect on seed yield (Singh et al., 2006). High mean values with stable performance for fruit number per umbel (Figure 4) had accessions – 37, 80, 63 and for fruit weight per umbel (Figure 5) accessions – 31, 48, 37, 12 can be select.
The results from this study showed that some genotypes were stable for some traits and unstable for another, suggesting that the genetic factors involved in the G x E differed between yield-related traits. The data presented in the present study had shown the presence of substantial variability in coriander accessions. Hence, the possibility for further improvement through selection using these variations is wide.

Accessions 31, 25, 38, 72, 71, 54, 60 were identified as suitable for future use in coriander breeding program for the production of high yielding coriander varieties.
Conclusion

A large variation was observed for most of the characters studied in germplasm accessions. High coefficients of variation (CVs) were recorded in fruit weight per umbel and per plant and 1000-fruits weight. Accessions 31, 25, 38, 72, 71, 54, 60 could be used successfully as progenitors in breeding programme for the production of high yielding coriander varieties for conditions of Bulgaria.

References

Review

Trends in battery cage husbandry systems for laying hens. Enriched cages for housing laying hens

H. Lukanov, D. Alexieva

143

Genetics and Breeding

Influence of environments on the amount and stability of grain yield in modern winter wheat cultivars I. Interaction and degree of variability

N. Tsenov, D. Atanasova

153

Variation of yield components in coriander (Coriandrum Sativum L.)

N. Dyulgerov, B. Dyulgerova

160

Nutrition and Physiology

Plant cell walls fiber component analysis and digestibility of birdsfoot trefoil (Lotus corniculatus L) in the vegetation

Y. Naydenova, A. Kyuchukova, D. Pavlov

164

Functional properties of maltitol

V. Dobreva, M. Hadjikinova, A. Slavov, D. Hadjikinov, G. Dobrev, B. Zheko

168

Food spectrum of grey mullet (Mugil cephalus L.) along the Bulgarian Black Sea coast

R. Bekova, G. Raikova-Petrova, D. Gerdzhikov, E. Petrova, V. Vachkova, D. Klisarova

173

Metabolic and enzymatic profile of sheep fed on forage treated with the synthetic pyrethroid Supersect 10 EC

R. Ivanova

179

Production Systems

Cultivation of Scenedesmus dimorphus strain for biofuel production

K. Velichkova, I. Sirakov, G. Georgiev

181

Study of the effect of soil trampling on the structural elements of yield and productivity of soybean

V. Sabei, S. Raykov, V. Arnaudov

186

Stability of herbicides and herbicide tank-mixtures at winter oilseed canola by influence of different meteorological conditions

G. Delchev

189

Screening of plant protection products against downy mildew on cucumbers (Pseudoperonospora Cubensis (Berkeley & M. A. Curtis) Rostovzev) in cultivation facilities

S. Masheva, N. Velkov, N. Valchev, V. Yankova

194
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy and selectivity of vegetation-applied herbicides and their mixtures with growth stimulator Amalgerol premium at oil-bearing sunflower grown by conventional, Clearfield and ExpressSun technologies G. Delchev</td>
<td>200</td>
</tr>
<tr>
<td>Agriculture and Environment</td>
<td></td>
</tr>
<tr>
<td>Manganese levels in water, sediment and algae from waterbodies with high anthropogenic impact V. Atanasov, E. Valkova, G. Kostadinova, G. Petkov, Ts. Yablanski, P. Valkova, D. Dermendjiev</td>
<td>206</td>
</tr>
<tr>
<td>Seasonal and vertical dynamics of the water temperature and oxygen content in Kardzhali reservoir, Bulgaria I. Iliev, L. Hadjinikolova</td>
<td>212</td>
</tr>
<tr>
<td>Condition and changes in types of natural pasture swards in the Sakar mountain under the influence of climatic and geographic factors V. Vateva, K Stoeva, D. Pavlov</td>
<td>216</td>
</tr>
<tr>
<td>Product Quality and Safety</td>
<td></td>
</tr>
<tr>
<td>Comparative studies on the gross composition of White brined cheese and its imitations, marketed in the town of Stara Zagora N. Naydenova, T. Iliev, G. Mihaylova, S. Atanasova</td>
<td>221</td>
</tr>
<tr>
<td>Effect of the environment on the quality of flour from common winter wheat cultivars I. Stoeva, E. Penchev</td>
<td>230</td>
</tr>
</tbody>
</table>
A criterion of sufficient information is to be experiments should be described in detail. Chemical analyses, statistical and other needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.