Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access

This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:

Agricultural Science and Technology
Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone: +359 42 699330 +359 42 699446
http://www.uni-sz.bg/ascitech/

Technical Assistance:

Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
AGRICULTURAL SCIENCE AND TECHNOLOGY

2014

An International Journal Published by Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
Analysis of energy consumption for artificial lighting of rooms for fattening of pigs

V. Katsarov*1, K. Peychev2

1Department of Animal Science, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
2Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

Abstract. State aid for the implementation of voluntary commitments for human attitude toward pigs involves providing artificial light for 11 hours a day. This technological approach is associated with a further increase of energy consumption at farms. Therefore, relevant calculation methods for determination of the energy costs of providing artificial illumination by various types of lighting fixtures are proposed. This comparative analysis can be used by farmers to optimize the energy consumption in different categories of pigs.

Keywords: pig raising, artificial lighting, energy efficiency, human attitude toward pigs

Introduction

Pig raising is one of the most dynamic sectors of farm animal production and its development is largely dependent on opportunities for supply of feed, nature of the applied technologies and managerial decisions. The main problems that must be solved in the period until 2020 are production growth, sustainable development and obtaining of high-quality and safe produce at the lowest possible consumption of various resources. This is in line also with the implementation of the Second National Energy Efficiency Plan (developed on the basis of Directive 2006/32/EC) according to which energy savings in 2016 should represent 9% of the average final energy consumption for the period 2001 – 2005.

The purpose of this study is to make a comparative analysis of power ratings and consumption levels of various types of lighting fixtures to provide artificial light at daytime in production buildings for fattening of pigs. The analysis is within the context of the state aid for farmers to implement voluntary commitments for human attitude toward pigs and the related requirement to provide artificial light for 11 hours a day (3 hours more than required under the standard).

Material and methods

The object of study is the category of pig fattening up to 110 kg live weight, raised in a typical building. In Figure 1 the general appearance and main construction parameters of such a building are sketched. Group raising boxes are located in parallel to the feed alley (1 m wide) and at a floor area of 42 m² providing individual floor area of 0.76 m² per pig. The building (900 m²) has 20 boxes and at a capacity of 55 animals per box the total number of pigs is 1100.

The power performance of 7 types of lighting fixtures, the main parameters of which are shown in Table 1, were studied.

Table 1. Characteristics of lighting systems

<table>
<thead>
<tr>
<th>No</th>
<th>Type of lighting fixture</th>
<th>Relative power per unit luminous flux, lm/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Incandescent lamp</td>
<td>13 – 15</td>
</tr>
<tr>
<td>2</td>
<td>Fluorescent tube</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>Energy saving lamp</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Halogen spot light bulb</td>
<td>20 – 30</td>
</tr>
<tr>
<td>5</td>
<td>Sodium low pressure lamp</td>
<td>100 – 200</td>
</tr>
<tr>
<td>6</td>
<td>Sodium high pressure lamp</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>LED</td>
<td>80 – 140</td>
</tr>
</tbody>
</table>

The luminous flux required to provide illuminance in compliance with the regulatory requirements is derived from the equation:

\[I_e = S \cdot i \]

(1)

where \(I_e \) is required luminous flux, \(lm \); \(S \) is indoor area of the room (building), \(m^2 \); \(i \) is illuminance rate required, \(lx \); \(i = 75 \cdot lx = 75 \cdot lm/m^2 \).

Figure 1. Scheme of a typical housing facility for fattening of pigs

*e-mail: vkatsarov@uni-sz.bg
The electric power required to provide the necessary luminous artificial illumination in pig raising housing. The standing of the energy saving light alternatives with energy and financial costs of about 15% higher than that of fluorescent tubes, is similar.

The results in Table 3 illustrate the cost of transition from an 8-hour to and 11-hour artificial light a day. The ratio between the consumption and cost characteristics of the different types of lighting fixtures is similar to that of the data from Table 2. The transition in housing facilities which use a lighting system with incandescent, halogen and high pressure sodium lamps would be the most expensive. Low pressure sodium lamps, LEDs and fluorescent tubes are energy and financially viable.

The required illuminance for the pig fattening room can be achieved with a different number of lighting fixtures depending on

\[N = \frac{P_e1000}{P_e} \]

where \(N \) is total number of required lighting fixtures, pcs; \(P_e \) is unit power rating per type of lighting fixture, W.

The absolute energy consumption and its cash equivalent are respectively expressed by quotations (4) and (5)

\[E = P_e \cdot T \cdot t, \text{kWh}, \]
\[B = E \cdot b, \text{BGN}, \]

where \(E \) is absolute cost of electric energy for the entire production cycle, at 8 and 11 hour duration of artificial lighting, kWh; \(T \) is duration of production cycle, days \((T=150); t \) is duration of artificial light day, h, \((t = 8; 11); B \) is cost of consumed electric energy, at 8 and 11 hours; \(b \) is unit consumer price (VAT included) per unit consumed electric energy, BGN/kWh.

For the purpose of the comparative analysis between the various types of lighting systems, two relative indicators of the energy consumption and the corresponding financial resources were derived:

\[OE = \frac{E}{N_p}, \text{kWh/pig}, \]
\[OB = \frac{B}{N_p}, \text{BGN/pig}, \]

where \(OE \) is relative energy consumption for lighting provided per pig, kWh/pig; \(OB \) is cash resources spent for lighting provided per pig for the whole production cycle, BGN/pig; \(N_p \) is number of fattened pigs in the production cycle, pcs.

The comparison between the discussed parameters was made using the difference between the absolute values or relative values:

\[DE = E_8 - E_11, \text{kWh}, \]
\[DB = B_8 - B_11, \text{BGN}, \]

Results and discussion

The absolute electric energy consumption and its corresponding cash resources for each type of lighting fixture throughout the production cycle are presented in Table 2. Sodium low pressure lamps and light diodes (LEDs) display are the best indicators. Their cost characteristics in terms of energy and financial resources are approximately 2 times lower than the commonly used fluorescent tubes and nearly 10 times lower than the incandescent lamps. This comparison shows that high pressure sodium, halogen and incandescent lamps are conditionally unsuitable for providing artificial illumination in pig raising housing. The standing of the energy saving light alternatives with energy and financial costs of about 15% higher than that of fluorescent tubes, is similar.

initial investment, opportunities to ensure uniform illumination without shadows and reliability of the whole light system. Thus, it can be assumed to a certain extent that the most suitable are the LEDs and fluorescent tubes. Their number is respectively 610 and 28, which presumably implies uniform illuminance and good reliability even in the presence of single defects. The number of low pressure sodium lamps needed for the model room is only 6, which implies comparatively lower reliability of illumination in the event of single defects.

The information in Table 5 gives interpretation of energy consumption costs of the lighting fixtures in relative terms as compared to the number of raised animals. Low pressure sodium lamps, LEDs and fluorescent tubes give an advantage over the other...
alternatives. Costs for the illuminance of a pig throughout the fattening period is about 10 times lower in low pressure sodium lamps and LEDs as compared to incandescent lamps. The same comparison with fluorescent tubes highlights nearly 2 times lower lighting costs per pig if the system uses low pressure sodium lamps or LEDs.

Extension of the artificial light in daytime from 8 to 11 hours a day means a slight increase in the consumption of electric energy and the corresponding financial cost. For example, if fluorescent lighting fixtures are used for the artificial lighting of the room under study, the relative price for increase of the light in daytime would be only 0.08 BGN/pig. The relative lighting costs per pig when low pressure sodium lamps and LEDs were used are even lower, 0.03 and 0.05 BGN/pig, respectively. The insignificant amount of increase in energy and financial costs when switching to an 11-hour light a day definitely underlines the feasibility of extending the artificial lighting. This would increase the nutritional activity of pigs raised for fattening and result in better health and improved welfare.

The analysis of absolute and relative indicators of energy needs for the illumination in pig fattening showed that the use of LEDs is distinguished for its very low energy rate, while the relatively high number of lighting fixtures (Table 4) insures the uniform shadow-free illuminance and high reliability in the event of defects. There is a potential for the development of low energy pig farms with independent power supply from a “grid-off” type photovoltaic system mounted on the roof of the buildings. In this light, the large-scale deployment of lighting systems with LEDs and the development of mechanisms for financial incentives in the form of grants should become a priority of the professional organizations of pig farmers.

Conclusion

Sodium low pressure lamp, LEDs and fluorescent tube fixtures used in pig raising have the lowest energy consumption and financial costs. Incandescent lamp, high pressure sodium lamp and halogen lighting fixtures are conditionally not suitable for artificial lighting in pig raising. Extension of artificial light in daytime from 8 to 11 hours is associated with a minor increase of energy consumption, while rise of costs is minimal. Large-scale use of LEDs for artificial lighting in pig raising is a real opportunity to minimize energy costs in the branch industry. Combining LED lighting with photovoltaic systems is a basis for the establishment of low-energy farms with relatively independent power supply.

Formation of expert groups for technological design of low-energy lighting systems in various production buildings in pig raising is required. Mechanisms for financial incentives and investment subsidies in the field of low-energy lighting in pig raising should be developed.

References

- Veterinary Medicine Activity Act (The State Gazette, No 92, 2011)
- Farmers Aid Act (The State Gazette, No 15, 2013)
- Decree No 21 of 14 December 2005 on minimum requirements for the protection and human attitude in pig raising (The State Gazette, No. 64, 2006)
- Decree No 44 of 20 April 2006 on veterinary medicine requirements to animal raising facilities (The State Gazette, No 50, 2010)
- Decree No 49 of 10 August 1976 on artificial lighting in buildings (The State Gazette, No 64, 1976)
- Guidelines for the Support for Implementation of Voluntary Commitments for Human Attitude Toward Pigs 2013 state aid scheme. (Decision of the Managing Board of the State Farm Fund, Minutes No 47 of 27.02.2013)

Tables

Table 4. Lighting systems by type, pieces

<table>
<thead>
<tr>
<th>Type of lighting system</th>
<th>Electric energy, kWh</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescent lamp</td>
<td>100</td>
<td>48</td>
</tr>
<tr>
<td>Fluorescent tube</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>Energy saving lamp</td>
<td>24</td>
<td>47</td>
</tr>
<tr>
<td>Halogen spot light bulb</td>
<td>10</td>
<td>270</td>
</tr>
<tr>
<td>Sodium low pressure lamp</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>Sodium high pressure lamp</td>
<td>53</td>
<td>30</td>
</tr>
<tr>
<td>LEDs</td>
<td>1</td>
<td>610</td>
</tr>
</tbody>
</table>

Table 5. Relative indicators for energy consumption rate of lighting fixtures at artificial light day of different duration

<table>
<thead>
<tr>
<th>Type of lighting fixture</th>
<th>Electric energy, kWh/pig</th>
<th>BGN/pig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 h</td>
<td>11 h</td>
</tr>
<tr>
<td>Incandescent lamp</td>
<td>5.26</td>
<td>7.23</td>
</tr>
<tr>
<td>Fluorescent tube</td>
<td>1.07</td>
<td>0.47</td>
</tr>
<tr>
<td>Energy saving lamp</td>
<td>1.23</td>
<td>1.70</td>
</tr>
<tr>
<td>Halogen spot light bulb</td>
<td>2.95</td>
<td>4.05</td>
</tr>
<tr>
<td>Sodium low pressure lamp</td>
<td>0.49</td>
<td>0.68</td>
</tr>
<tr>
<td>Sodium high pressure lamp</td>
<td>1.71</td>
<td>2.36</td>
</tr>
<tr>
<td>LEDs</td>
<td>0.67</td>
<td>0.92</td>
</tr>
</tbody>
</table>
Review

Blue-green coloured eggs in *Gallus gallus domesticus*
H. Lukanov

Genetics and Breeding

Investigation on the resistance of doubled haploid sunflower lines to some biotic factors
M. Drumeva, P. Yankov, N. Nenova, P. Shindrova

Usage of cluster analysis for grouping hybrids and evaluation of experimental mutant maize hybrids
M. Ilchovska, I. Ivanova

Biological fertility and milk yield in Bulgarian Dairy Synthetic Population sheep according to breeding line
N. Stancheva, I. Dimitrova, S. Georgieva

Nutrition and Physiology

In vivo digestibility of cereal-based diets supplemented with sunflower vs. rapeseed meal
M. Yossifov, L. Kozelov

Histometrical parameters in third eyelid (Harderian) gland of the common pheasant (*Phasianus Colchicus Colchicus*)
D. Dimitrov

Production Systems

Studies on some cherry clonal rootstocks in nursery
G. Dobrevska

Parameters of "yield – irrigation depth" relationship for sunflower grown in the region of Plovdiv
A. Matev, R. Petrova

Optimization of thickness of thermal insulation for roofs of turkey's houses
R. Georgiev, V. Dimova, K. Peichev, P. Georgiev

Sulfo technology for multiplication of sunflower hybrids resistant to tribenuron metil-based herbicides
C. Melucă, N. Pîrvu, T. Nistor, R. Sturzu, A. Stoilova

Influence of universal liquid fertilizer MaxGrow on yield and quality of durum wheat (*Triticum durum Desf.*) cultivar Progress
G. Panayotova, A. Stoyanova
Effect of different types of main soil tillage on the vertical distribution of maize seeds in the soil layer and on the development of the plants
P. Yankov, M. Drumeva

Analysis of energy consumption for artificial lighting of rooms for fattening of pigs
V. Katsarov, K. Peychev

Influence of Herbagreen mineral fertilizer on seed production of cucumber, melon and zucchini
N. Velkov, V. Petkova

Agriculture and Environment

Soil properties and salt content of soil from Inland salt meadow near Radnevo town
M. Todorova, N. Grozeva, D. Dermendgieva

Botanical composition of the main pasture types in Sakar and Strandja region
V. Vateva, K. Stoeva, D. Pavlov

New data for Leucoagaricus and Leucocoprinus (Agaricaceae) in Bulgaria
M. Lacheva

Development and characteristics of accessions of Eragrostis tef (Zucc.) Trotter in the South Dobrudja
H. Stoyanov

Possible adverse effects of tetracyclines on the human health and the environment
Y. Koleva, T. Dimova, G. Angelova

Contemporary assessment of the development of the genus Chaetoceros in the Bulgarian coastal waters
D. Petrova, D. Gerdzhikov, G. Kostadinova

Ecological assessment of the phytoplankton community in the Bulgarian Black Sea coastal waters
D. Petrova, G. Kostadinova, D. Gerdzhikov

Product Quality and Safety

Biopolymer matrix systems for incorporation of biologically active substances
S. Dyankova, A. Solak
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail.

A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Бг, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Мг, Japanese = Ja, Chinese = Ч, Arabic = Аr, etc.)

The following order in the reference list is recommended:

**Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, Sept.11 – 14, Berlin, Germany, p. 302 (Abstr.).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

In order to verify results.