Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
http://www.uni-sz.bg/ascitech/
Effect of different types of main soil tillage on the vertical distribution of maize seeds in the soil layer and on the development of the plants

P. Yankov*, M. Drumeva

Department of Plant Production, Faculty of Marine Sciences and Ecology, Technical University, 1 Studentska, 9010 Varna, Bulgaria

Abstract. The investigation was carried out during 2008–2010 in the trial field of Dobrudzha Agricultural Institute on slightly leached chernozem. To determine the effect of different types of soil tillage on the vertical distribution of the maize seeds in the soil layer and the subsequent development of plants, the following variants of a stationary field experiment were analyzed: plowing at 24–26 cm, disking in autumn and double cultivation in spring (check variant); cutting at 24–26 cm, pre-sowing treatment with total herbicide (adapted direct sowing); double disking at 10–12 cm accompanied by autumn disking and double spring cultivation. Hybrid Anast was sown at plant density 55 000 plants/ha. The most even vertical distribution of the maize seeds in the soil layer was ensured at adapted direct sowing performed with high quality. Under constant cutting and annual disking, the percent of maize seeds below and above the optimal depth increased in comparison to adapted direct sowing. The variation in the depth of planted seeds was the highest when sowing the seeds in the plowed soil. At planting under conditions of lower temperatures, cutting, adapted direct sowing and disking retarded the rates of germination in comparison to plowing and elongated the developmental stage of maize with 3–5 days. The number of germinating plants under these main types of soil tillage decreased by 6 to 15 %.

Under favorable thermal regime after planting, the rate of germination of maize seeds in the variants with reduction and exclusion of the main soil tillage was 2.2 °C higher than normal (Figure 1). The mean diurnal air temperature in April of 2006, maize needs well cultivated soil which allows quality active vegetative growth of maize occurs were warmer than the precipitation norm. The analysis of the air temperature showed that April, at the end of which emergence of the maize plants occur, was in 2009 cooler than normal (Figure 1). The mean diurnal air temperature in April of 2008 was 2.2 °C higher than normal. The rest of the months when active vegetative growth of maize occurs were warmer than the norm.

The aim of this investigation was to follow the effect of different ways of soil tillage on the vertical distribution of maize seeds in the soil layer and on the development of plants.

Keywords: maize, main tillage of soil, distribution of seeds down the depth profile, plant development

Introduction

The mass introduction of chemicals in contemporary agriculture when growing maize decreased the role of soil tillage in the production technology of this crop. The wide usage of mineral fertilization also imposed the necessity to reconsider the significance of deep plowing as a major means of increasing soil fertility. The function of traditional plowing with turning of the soil layer for weed control was also considerably limited with a view of the currently available rich variety of system contact herbicides used in the growing of maize. According to Klochkov (1986), on the basis of these prerequisites technologies should be developed for growing maize under minimal and nil tillage and soil tillage without turning the soil layer, which would ensure equal or higher yields while significantly reducing labor, fuel and equipment expenses.

According to the data provided by Ilyn (1984) and Shpaar (2006), maize needs well cultivated soil which allows quality distribution of the seeds at planting and their uniform emergence which ensures the unobstructed development of roots in the plow layer and the underlying horizons. Additionally, a number of researchers (Barev, 1975; Holmov, 1990; Milashtenko, 1977) have concluded that a strictly differential approach is necessary with regard to main tillage of soil for maize in accordance with the specific soil conditions and the local micro relief of the land. The officially adopted technology for production of cereals by Klochkov et al. (1988) recommends the optimal planting depth for maize to be 6–8 cm.

The aim of this investigation was to follow the effect of different ways of soil tillage on the vertical distribution of maize seeds in the soil layer and on the development of plants.

Material and methods

The investigation was carried out during 2008–2010 in the trial field of Dobrudzha Agricultural Institute – General Toshevo. The effect of different ways of soil tillage on the productivity of agricultural plants and some physical and chemical characteristics of the slightly leached chernozem soils ([1] FAO, 2002) have been investigated in a stationary field trial initiated in 1987. Crops typical for the region (wheat, grain maize, bean and sunflower) were included in a 6-field crop rotation. According to Yolevsky et al. (1959) the physical properties of the slightly leached chernozem soils determine favorable hydro and air regime.

The sum of vegetation rainfalls (April-August) in 2008 was close to the precipitation norm (Figure 2). In 2009 the sum of vegetation rainfalls was lower. In 2010 the amount of rainfalls was higher than the precipitation norm.

For the purposes of this study the following variants of main soil tillage of maize were chosen:

- Plowing at 24–26 cm, disking in autumn and double cultivation in spring (check);
- Cutting at 24–26 cm, disking in autumn and double cultivation in spring;
- Cutting at 24–26 cm, pre-sowing treatment with total herbicide (adapted direct sowing);

56
according to developmental stages on 50 plants in 4 replications. The statistical processing of data was done with the help of SPSS 16.0 and Microsoft Excel 2007.

Results and discussion

Distribution of the seeds in the soil layer

The distribution of the seeds in the soil layer is determined by the quality of the soil tillage with respect to the size of soil units and the uniformity of the depth of its performance, as well as by the presence of plant residues. The data characterizing the vertical distribution of the seeds in soil subjected to various ways of tillage for main and pre-sowing preparation for maize showed that within the optimal depth (6–8 cm), the greatest amount of seeds were planted after adapted direct sowing, and the lowest – after main tillage of soil performed as disking (Figure 3). At depth lower than the favorable, double disking at depth 10–12 cm accompanied by autumn the highest number of seeds were registered after disking: a total of disking and double spring cultivation.

Sowing was done with pneumatic seeder for root crops. Hybrid Anasta was sown at density 55000 plants/ha. The depth of seed planting was determined after the end of germination by measuring the etiolated part of the stems of the uprooted plants at grouping interval of 1 mm. Since the emergence of the first plants, the dynamics of germination was registered daily. It was expressed as percent from planted seeds. The growth of maize was evaluated according to developmental stages on 50 plants in 4 replications.

The analysis of variances showed that the effect of the main types of soil tillage for maize on the vertical distribution of seeds at

![Figure 1](image1.png)

Figure 1. Air temperatures from April to September during 2008–2010

![Figure 2](image2.png)

Figure 2. Precipitation sum during the vegetation period (April–August)

- Double disking at depth 10–12 cm accompanied by autumn disking and double spring cultivation.

Sowing was done with pneumatic seeder for root crops. Hybrid Anasta was sown at density 55000 plants/ha. The depth of seed planting was determined after the end of germination by measuring the etiolated part of the stems of the uprooted plants at grouping interval of 1 mm. Since the emergence of the first plants, the dynamics of germination was registered daily. It was expressed as percent from planted seeds. The growth of maize was evaluated according to developmental stages on 50 plants in 4 replications.

The statistical processing of data was done with the help of SPSS 16.0 and Microsoft Excel 2007.

Results and discussion

Distribution of the seeds in the soil layer

The distribution of the seeds in the soil layer is determined by the quality of the soil tillage with respect to the size of soil units and the uniformity of the depth of its performance, as well as by the presence of plant residues. The data characterizing the vertical distribution of the seeds in soil subjected to various ways of tillage for main and pre-sowing preparation for maize showed that within the optimal depth (6–8 cm), the greatest amount of seeds were planted after adapted direct sowing, and the lowest – after main tillage of soil performed as disking (Figure 3). At depth lower than the favorable, the highest number of seeds were registered after disking: a total of 41.4 %, most of them positioned in the 5-6 cm layer. The seeds planting was determined after the end of germination by measuring the etiolated part of the stems of the uprooted plants at grouping interval of 1 mm. Since the emergence of the first plants, the dynamics of germination was registered daily. It was expressed as percent from planted seeds. The growth of maize was evaluated according to developmental stages on 50 plants in 4 replications.

The analysis of variances showed that the effect of the main types of soil tillage for maize on the vertical distribution of seeds at

![Figure 3](image3.png)

Figure 3. Distribution of maize seeds along depths according to the type of soil tillage (%)
the respective depths was statistically significant (Table 1). The effect of the investigated factor on the studied character was significant for the 5–6 cm layer at $P = 0.01$, and for all other depths at $P = 0.001$. Duncan’s test allowed following the effect of the respective levels of the tested factor on the investigated agronomy parameter (Table 2). The widest range of vertical scattering of seeds and their subsequent occurrence in a greater number of different groups was observed after disking and plowing. Within a narrower range were distributed the seeds after adapted direct sowing and cutting. The test divided these types of soil tillage into two groups (a and b) according to the different investigated depths. The greater lack of planting depth uniformity after disking due to the shallower distribution of seeds was probably due to the greater compactness of the zone immediately below the cultivated horizon caused by the working parts of the soil tillage tools. The reason for the high percent of seeds planted at depth greater than the optimal after plowing is the insufficient texture stability of the plow layer and its loose structure at the moment of sowing. The applied cutting and the adapted variant of direct sowing eliminated the surface unevenness and contributed to higher soil compaction thus ensuring more uniform depth of seed planting.

Table 1. Variance analysis of the investigated index (Values of parameter p)

<table>
<thead>
<tr>
<th>Depth, cm</th>
<th>3–4 cm</th>
<th>4–5 cm</th>
<th>5–6 cm</th>
<th>6–7 cm</th>
<th>7–8 cm</th>
<th>8–9 cm</th>
<th>9–10 cm</th>
<th>over 10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant</td>
<td>.000</td>
<td>.000</td>
<td>.003</td>
<td>.000</td>
<td>.000</td>
<td>.001</td>
<td>.000</td>
<td>.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Plow at 24–26 cm</th>
<th>Cutting at 24–26 cm</th>
<th>Adapted no-till</th>
<th>Disking at 10–12 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups (Values)</td>
<td>a (0.0)</td>
<td>b (5.7)</td>
<td>a (19.3)</td>
<td>a (22.5)</td>
</tr>
<tr>
<td></td>
<td>b (4.9)</td>
<td>a (14.8)</td>
<td>b (25.2)</td>
<td>a, b (26.4)</td>
</tr>
<tr>
<td></td>
<td>(27.5)</td>
<td>a, b (28.0)</td>
<td>a, b (26.7)</td>
<td>a, b (23.2)</td>
</tr>
<tr>
<td></td>
<td>b (13.2)</td>
<td>a, b (26.7)</td>
<td>b (12.9)</td>
<td>a (7.2)</td>
</tr>
<tr>
<td></td>
<td>c (8.5)</td>
<td>b (12.3)</td>
<td>b (4.7)</td>
<td>a (1.8)</td>
</tr>
<tr>
<td></td>
<td>c (5.9)</td>
<td>b (4.5)</td>
<td>a (0.0)</td>
<td>a (0.0)</td>
</tr>
</tbody>
</table>

The dynamics of germination after the respective types of soil tillage was followed under various mean diurnal temperatures during the period between sowing and germination (Figure 4). Under mean diurnal temperature of 9.3°C the germination after cutting and adapted direct sowing began later and occurred at lower rate. Under this temperature, 17 days after sowing, the emerging plants were 68% after plowing, 51% after cutting, 42% after adapted direct sowing and 28% after constant disking. The lower percent of emerging plants in the observed variants of main soil tillage as compared to plowing under these mean diurnal temperatures was probably due to the lower viability of seeds as a result of the less favorable thermal and aeration soil conditions caused by the above types of tillage.

Germination and growth of plants

<table>
<thead>
<tr>
<th>Days after sowing</th>
<th>0</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of emerged plants</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>% of emerged plants</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>75</td>
</tr>
</tbody>
</table>

Figure 4. Dynamics of maize emergence after different soil tillage (%)
The variation in the depth of seed planting was the highest after sowing and annual disking. Seven days after sowing the emerging plants were 50% after plowing, 55% after cutting, 60% after adapted direct sowing and 62% after disking. On day 11, the rate of germination became even and the stage was concluded simultaneously, at comparatively equal percent of emerging plants after all main soil tillage types. The more intensive emergence after the reduced number of tilths and nil tillage under favorable temperature regime after sowing can be explained by the more compact bed and the better contact of seeds with the soil, and by the available soil moisture. The comparison of the data on germination under the two thermal regimes showed that under insufficient temperature the percent of emerging plants after all types of main soil tillage was lower. After plowing and cutting, under unfavorable thermal regime, the emerging plants were by 9% and 13% less than the percent of emerging plants under conditions of sufficient warmth during the period between sowing and germination. After adapted direct sowing and annual disking, these differences were higher reaching 17% and 24%, respectively.

The growth parameters (Table 3) showed variations in plant height depending on the types of soil tillage during the earlier developmental stages. At stage 5–7 leaf of maize, plants were the highest after main soil tillage performed as disking and the shortest—after adapted direct sowing. After plowing and cutting plant height was comparatively uniform. At stage 10–11 leaf plants were the shortest after disking and the highest after plowing. The variations were significant at P = 0.001. At this stage of the vegetative development of maize, this index was with comparatively equal values for cutting and adapted direct sowing. At silking stage the plants were the shortest after annual disking—statistically significant at P = 0.01. After adapted direct sowing the highest plant height of maize was measured. Plowing and cutting ranked second according to this index. The more depressed plant height after main soil tillage performed as disking was accompanied by smaller stem diameter measured at 10–11 leaf and silking stages. Stems had the highest diameter after adapted direct sowing followed by cutting and plowing. The variations, however, were not statistically significant.

Table 3. Effect of soil tillage on stem height and diameter at different stages of maize plant development

<table>
<thead>
<tr>
<th>Soil tillage</th>
<th>Plant height, cm</th>
<th>Stem diameter, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5–7 leaf stage</td>
<td>10–11 leaf stage</td>
</tr>
<tr>
<td>Plowing at 24–26 cm</td>
<td>18.7</td>
<td>60.3</td>
</tr>
<tr>
<td>Cutting at 24–26 cm</td>
<td>18.4</td>
<td>56.5</td>
</tr>
<tr>
<td>Adapted no–till</td>
<td>18.0</td>
<td>57.6</td>
</tr>
<tr>
<td>Disking at 10–12 cm</td>
<td>20.5</td>
<td>47.7</td>
</tr>
<tr>
<td>Gd</td>
<td>2.54</td>
<td>4.91</td>
</tr>
<tr>
<td></td>
<td>3.85</td>
<td>7.43</td>
</tr>
<tr>
<td></td>
<td>6.18</td>
<td>11.95</td>
</tr>
</tbody>
</table>

a, b, c – Statistical significance of F for rates 5, 1 and 0.1 %, respectively

The most even vertical distribution of the maize seeds in the soil layer was ensured by adapted direct sowing done with high quality. In comparison, after constant cutting and annual disking, the percent of maize seeds planted above and below the optimal depth increased. The variation in the depth of seed planting was the highest after sowing of maize in plowed soil.

After sowing under lower temperatures, cutting, adapted direct sowing and disking lead to retarded rate of emergence in comparison to plowing and elongated the developmental stage of maize with 3–5 days. The number of emerging plants after these types of main soil tillage decreased by 6% to 16%. Under favorable thermal regime after sowing, the rate of germinating of the maize seeds in the variants with reduced main soil tillage was more intensive only at the beginning. The duration of the emergence stage and the percent of emerging plants were equal at all types of tillage.

At the early stages of maize development, the rate of plant growth in height was the most intensive after shallow main tillage performed as disking. With the advance of the vegetative development of the crop, after adapted direct sowing, plowing and cutting, the stems of the plants were with greater height and diameter in comparison to annual disking.

References

Klochkov B, 1986. Effect of the types and systems of soil tillage on the development of maize and the grain yield. Soil science, agrochemistry and plant protection, XIXI, 82-90 (Bg).

Review

Blue-green coloured eggs in *Gallus gallus domesticus*
H. Lukanov
3

Genetics and Breeding

Investigation on the resistance of doubled haploid sunflower lines to some biotic factors
M. Drumeva, P. Yankov, N. Nenova, P. Shindrova
11

Usage of cluster analysis for grouping hybrids and evaluation of experimental mutant maize hybrids
M. Ilchovska, I. Ivanova
14

Biological fertility and milk yield in Bulgarian Dairy Synthetic Population sheep according to breeding line
N. Stancheva, I. Dimitrova, S. Georgieva
17

Nutrition and Physiology

In vivo digestibility of cereal-based diets supplemented with sunflower vs. rapeseed meal
M. Yossifov, L. Kozelov
21

Histometrical parameters in third eyelid (Harderian) gland of the common pheasant (*Phasianus Colchicus Colchicus*)
D. Dimitrov
24

Production Systems

Studies on some cherry clonal rootstocks in nursery
G. Dobrevska
28

Parameters of "yield – irrigation depth" relationship for sunflower grown in the region of Plovdiv
A. Matev, R. Petrova
32

Optimization of thickness of thermal insulation for roofs of turkey’s houses
R. Georgiev, V. Dimova, K. Peichev, P. Georgiev
40

Sulfo technology for multiplication of sunflower hybrids resistant to tribenuron metil-based herbicides
C. Melucă, N. Pîrvu, T. Nistor, R. Sturzu, A. Stoilova
44

Influence of universal liquid fertilizer MaxGrow on yield and quality of durum wheat (*Triticum durum Desf.*) cultivar Progress
G. Panayotova, A. Stoyanova
50
Effect of different types of main soil tillage on the vertical distribution of maize seeds in the soil layer and on the development of the plants
P. Yankov, M. Drumeva

Analysis of energy consumption for artificial lighting of rooms for fattening of pigs
V. Katsarov, K. Peychev

Influence of Herbagreen mineral fertilizer on seed production of cucumber, melon and zucchini
N. Velkov, V. Petkova

Soil properties and salt content of soil from Inland salt meadow near Radnevo town
M. Todorova, N. Grozeva, D. Dermendgjeva

Botanical composition of the main pasture types in Sakar and Strandja region
V. Vateva, K. Stoeva, D. Pavlov

New data for Leucoagaricus and Leucocoprinus (Agaricaceae) in Bulgaria
M. Lacheva

Development and characteristics of accessions of Eragrostis tef (Zucc.) Trotter in the South Dobrudja
H. Stoyanov

Possible adverse effects of tetracyclines on the human health and the environment
Y. Koleva, T. Dimova, G. Angelova

Contemporary assessment of the development of the genus Chaetoceros in the Bulgarian coastal waters
D. Petrova, D. Gerdzhikov, G. Kostadinova

Ecological assessment of the phytoplankton community in the Bulgarian Black Sea coastal waters
D. Petrova, G. Kostadinova, D. Gerdzhikov

Biopolymer matrix systems for incorporation of biologically active substances
S. Dyankova, A. Solak
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Бg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Мо, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title, Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Thesis:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Acknowledgements (if any), References, Tables, Figures.