Editor-in-Chief
Tsanko Yablanski
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Co-Editor-in-Chief
Radoslav Slavov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections

Genetics and Breeding
Atanas Atanasov (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Bojin Bojinov (Bulgaria)
Stoicho Metodiev (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Zervas Georgios (Greece)
Ivan Varlyakov (Bulgaria)

Production Systems
Dimitar Pavlov (Bulgaria)
Bohdan Szostak (Poland)
Dimitar Panayotov (Bulgaria)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Georgi Petkov (Bulgaria)
Ramesh Kanwar (USA)
Martin Banov (Bulgaria)

Product Quality and Safety
Marin Kabakchiev (Bulgaria)
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)

English Editor
Yanka Ivanova (Bulgaria)

Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student’s campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
http://www.uni-sz.bg/ascitech/

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: ascitech@uni-sz.bg
Sulfo technology for multiplication of sunflower hybrids resistant to tribenuron methyl-based herbicides

Cr. Meluca*, N. Pirvu, T. Nistor, R. Sturzi, A. Stoilova

1 Agricultural Research and Development Station, Teleorman, Romania
2 S.C. Quality Crops, Romania
3 Field Crops Institute, 6200 Cirpan, Bulgaria

Abstract. Certain experiments with sunflower hybrids realized through Sulfo technology, resistant to tribenuron methyl 75% based herbicides were performed at Agricultural Research and Development Station (ARDS) Teleorman, Romania. There is a response to the hypothesis that the herbicide application (4–6 real leaves) when night temperatures (after application) are lower than 12°C could provoke higher damages at green tissue level. Damages were registered of 6.5–11.8% and decreased to 0.8–5.6% when temperatures were higher than 12°C. The yielding ability of these sunflower hybrids is not affected as compared to the conventional check hybrid Favorit, its level was, on three year average, of 3652–4985 kg/ha, versus 3735 kg/ha achieved by the Favorit hybrid. It may emphasize that the hybrid Toro showed the highest gain in yield versus the check hybrid Favorit (1250 kg/ha, respectively 33.5%). The yielding ability of the hybrid Toro exceeded by 774 kg/ha (11.8%) the yield achieved by the hybrid PR 64 LE20 (Pioneer registration).

Keywords: Helianthus annuus L., hybrids, herbicides, resistance, phytotoxicity, productivity.

Introduction

Sunflower (Helianthus annuus L.) is one of the most important oilseed crop, grown on a total of over 22 million hectares worldwide (Škoric et al., 2008). The oil has various food and industrial uses. It is superior edible oil, due to high unsaturated fatty acid content (85–91% linoleic and oleic acids). As all oils with melting point below 50°C, it has complete digestibility (Vrînceanu, 2000). The sunflower is a very valuable fodder crop, especially for silos, and a honey plant, too.

Breeding of sunflower in the world had more stages, determined by the achieved progresses in genetic and breeding researches. In the first years of VII decade of the last century, a stage of F1 hybrids released by inbred crossing began, ongoing process of classical sunflower hybrid breeding. At the current stage sunflower herbicide resistant hybrids are developed and introduced through: "clearfield" technology (IMI – resistant hybrids) and "sulfo" technology (hybrids resistant to 75% triburon methyl-based herbicides).

The Sulfo technology of sunflower breeding involves the resistance of hybrids to 75% triburon methyl-based herbicides during vegetation. These are referred to the sulfonylureas (SUs) (Kramer and Schirmer, 2007; HRAC: Herbicide classification, Jan. 2002) and are found to be efficient in controlling a wide range of broadleaved weeds in cereal crops including wheat, barley, oats and rye (Tsyuganov and Potarenko, 2011; Delchev, 2010a; 2010b; 2012). SU compounds interfere with a key enzyme required for weed cell growth – acetolactate synthase (Kolkman et al., 2004). The first registered SU resistant sunflower genetic stocks were developed in USDA-Fargo, North Dakota – SURES-1 and SURES-2 (Miller and Al-Khatib, 2004). From these original populations SU resistance was transferred into a large number of sunflower hybrids (Jocić et al., 2008; 2011).

The aim of this study was to examine the performance of sunflower hybrids resistant to triburon methyl-based herbicides, the phytotoxicity effects as a result of treatment, and to evaluate the adaptability of the applied Sulfo technology under the local conditions.

Material and methods

In 2010–2012 at Agricultural Research and Development Station (ARDS) Teleorman, Romania a series of experimental plots of 20 m2 was performed in the field, by randomized block method, in three replications, with classical and “turbo” hybrids (resistant to triburon methyl-based herbicides) released by S.C. QUALITY AGRO S.R.L. The experiments included recognized “sulfo”-resistant hybrids – Toro and Amigo, and new entries – PR 64 LE20 (Pioneer signature), La Pampa, Sulfosol, Zorba, Bravo, Bond, Rambo, Toledo and Colorado (sulfo-resistant), the check Favorit hybrid (conventional), and “IMI”-resistant Goldimi hybrid. Express-50 herbicide (30 g/ha) was applied on plots sown at different time – on 21st April and on 31st May. Treatment was made in phase 4–6 true leaves, on 12th May (during cold nights, night temperatures <12°C) and on 16th June (higher night temperatures), respectively. Express-50 herbicide is a new and improved triburon-methyl-based herbicide manufactured by Du Pont (DuPont Crop Protection Sulfonylurea Herbicides). It is applied once or twice per growing season at a maximum seasonal rate of 30 g/ha. The phytotoxicity quotient was visually assessed on a scale from 1 to 5 (note 1 – resistant, note 5–susceptible). The results were subjected to ANOVA (Ceapoiu, 1968).

Results and discussion

To demonstrate the resistance of Sulfo hybrids compared to the
conventional check hybrid (Favorit) and IMI check-hybrid (Goldimi) the results obtained after Express 50 herbicide application (30 g/ha), 4-6 real leaves, on plots sown at different times, are presented. The first case that was sown on 21st April emerged on 29th April, herbicide application was on 12th May (lower night temperatures). The second one that was sown on 31 May, emerged on 6th June, herbicide application was on 16th June (higher night temperatures) (Table 1).

The percentage of affected plants of Sulfo-resistant hybrids is 6.5–11.8% at the first sowing stage (night temperatures after herbicide application were 9.0–12.1°C), respectively 0.8–5.6% at the second sowing stage (night temperatures were 14.7–18.4°C after herbicide application). With the classical hybrid Alvarez, the percentage of destroyed plants was 100% at both moments of application, while with IMI hybrid Goldimi, at both application times, three plants resisted, with high degree of branching (as an effect of the herbicide). The percentage of destroyed plants at check is 98.8–99.4% (it is possible that these six IMI–resistant plants could contain the gene resistant to tribenuron methyl).

The reaction of Sulfo resistant hybrids to thermic and hydric stress is presented in Tables 2 and 3. The yielding ability of Sulfo-resistant hybrids was between 3652–4985 kg/ha. Except the hybrids Bravo and Toledo, which registered a level of average yields as with the conventional check Favorit, the tested hybrids achieved statistically distinctly significant and very significant yield gains of 264–1250 kg/ha (7.1–33.5%), compared to the conventional check. One can especially underline the hybrid Toro, with the highest yield gain (1250 kg/ha, respectively 33.5%). The yielding ability of the hybrid Toro exceeds by 774 kg/ha (11.8%) the yield achieved by the conventional check Favorit, the tested hybrids achieved statistically distinctly significant and very significant yield gains of 264–1250 kg/ha (7.1–33.5%), compared to the conventional check. One can especially underline the hybrid Toro, with the highest yield gain (1250 kg/ha, respectively 33.5%).

Table 1. Behavior of sunflower hybrids regarding the resistance to Express 50 herbicide application, ARDS, Teleorman, 2012

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Early sowing</th>
<th>Late sowing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sown: 21st April</td>
<td>Sown: 31st May</td>
</tr>
<tr>
<td></td>
<td>Emergence: 29th April</td>
<td>Emergence: 6th June</td>
</tr>
<tr>
<td></td>
<td>Herbicide application: 12th May</td>
<td>Herbicide application: 12th June</td>
</tr>
<tr>
<td>No of rows</td>
<td>No of total plants</td>
<td>No of affected plants</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>La pampa</td>
<td>15</td>
<td>474</td>
</tr>
<tr>
<td>Toledo</td>
<td>15</td>
<td>610</td>
</tr>
<tr>
<td>Toro</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Amigo</td>
<td>15</td>
<td>551</td>
</tr>
<tr>
<td>Sulfosol</td>
<td>15</td>
<td>559</td>
</tr>
<tr>
<td>Colorado</td>
<td>15</td>
<td>448</td>
</tr>
<tr>
<td>Alvarez Mt. Clasic</td>
<td>15</td>
<td>542</td>
</tr>
<tr>
<td>Goldimi Mt. Imi</td>
<td>15</td>
<td>516</td>
</tr>
</tbody>
</table>

* at resistant hybrids, the plants were affected at chlorophyll level, having various yellowing degrees followed by recovering during two weeks.

Table 2. Yielding ability and productivity elements of Sulfo-resistant sunflower hybrids, ARDS, Teleorman, 2010–2012

<table>
<thead>
<tr>
<th>Hybrids</th>
<th>Average yield, kg/ha</th>
<th>Diff. ± check, kg/ha</th>
<th>Relative yield, %</th>
<th>Significant</th>
<th>TKW, g</th>
<th>TW, kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR 64 LE20</td>
<td>4211</td>
<td>+476</td>
<td>112.7</td>
<td>***</td>
<td>41.6</td>
<td>38.3</td>
</tr>
<tr>
<td>Amigo</td>
<td>4114</td>
<td>+379</td>
<td>110.1</td>
<td>***</td>
<td>44.8</td>
<td>37.0</td>
</tr>
<tr>
<td>Toro</td>
<td>4985</td>
<td>+1250</td>
<td>133.5</td>
<td>***</td>
<td>46.0</td>
<td>37.0</td>
</tr>
<tr>
<td>La Pampa</td>
<td>3999</td>
<td>+264</td>
<td>107.1</td>
<td>**</td>
<td>40.4</td>
<td>41.6</td>
</tr>
<tr>
<td>Sulfosol</td>
<td>3920</td>
<td>+185</td>
<td>105.0</td>
<td>***</td>
<td>54.4</td>
<td>37.1</td>
</tr>
<tr>
<td>Zorba</td>
<td>4136</td>
<td>+401</td>
<td>110.7</td>
<td>***</td>
<td>48.8</td>
<td>34.6</td>
</tr>
<tr>
<td>Bravo</td>
<td>3888</td>
<td>+153</td>
<td>104.1</td>
<td>***</td>
<td>47.2</td>
<td>36.2</td>
</tr>
<tr>
<td>Bond</td>
<td>4122</td>
<td>+387</td>
<td>110.4</td>
<td>***</td>
<td>54.8</td>
<td>37.0</td>
</tr>
<tr>
<td>Rambo</td>
<td>4140</td>
<td>+405</td>
<td>110.8</td>
<td>***</td>
<td>44.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Toledo</td>
<td>3652</td>
<td>-83</td>
<td>97.8</td>
<td></td>
<td>45.6</td>
<td>35.5</td>
</tr>
<tr>
<td>Favorit Mt. clasic</td>
<td>3735</td>
<td>Mt.</td>
<td>100.0</td>
<td></td>
<td>44.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Goldimi Mt. IMI</td>
<td>4201</td>
<td>+466</td>
<td>112.5</td>
<td>***</td>
<td>48.5</td>
<td>37.9</td>
</tr>
</tbody>
</table>

LSD 5% 188 5.0
LSD 1% 251 6.7
LSD 0.1% 330 8.8
Table 3. Phenological observations and biometrical determinations of sunflower Sulfo resistant hybrids, ARDS, Teleorman, 2011–2012

<table>
<thead>
<tr>
<th>Hybrids</th>
<th>Note of phytotoxicity (note)</th>
<th>Flowering time</th>
<th>Physiological maturity time</th>
<th>Plant height, cm</th>
<th>Empty seeds %</th>
<th>Susceptibility to diseases (% affected plants)</th>
<th>Head position</th>
<th>Head shape, cm.</th>
<th>Res. to lodging in p.v.</th>
<th>Plants lodged to harvest Ing, %</th>
<th>Broken plants under head, %</th>
<th>Vegetation period, days</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR 64 LE20</td>
<td>1</td>
<td>27.06</td>
<td>10.08</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>108</td>
</tr>
<tr>
<td>Amigo</td>
<td>1</td>
<td>27.06</td>
<td>10.08</td>
<td>156</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>2.2</td>
</tr>
<tr>
<td>Toro</td>
<td>1</td>
<td>30.06</td>
<td>13.08</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>20</td>
<td>1</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>La Pampa</td>
<td>2</td>
<td>1.07</td>
<td>14.08</td>
<td>155</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfosol</td>
<td>1</td>
<td>30.06</td>
<td>13.08</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zorba</td>
<td>2</td>
<td>26.06</td>
<td>8.08</td>
<td>164</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bravo</td>
<td>1</td>
<td>29.06</td>
<td>10.08</td>
<td>162</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bond</td>
<td>1</td>
<td>30.06</td>
<td>17.08</td>
<td>152</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>1.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Rambo</td>
<td>1</td>
<td>30.06</td>
<td>10.08</td>
<td>166</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>5.7</td>
</tr>
<tr>
<td>Toledo</td>
<td>3</td>
<td>25.06</td>
<td>8.08</td>
<td>167</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>Favorit</td>
<td>-</td>
<td>29.06</td>
<td>10.08</td>
<td>165</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>19</td>
<td>1</td>
<td>1.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Mt.classic</td>
<td>-</td>
<td>2.07</td>
<td>16.08</td>
<td>210</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: 1 – there is no suffering of plants; 2 – slight yellowing of plants; 3 – obvious yellowing of green tissues, with no necrosis of apical meristem; 4 – pronounced yellowing of green tissues, necrosis, inhibition of apical meristems, which lead to plants branching; 5 – large necrosis of green tissues and apical meristem destroyed, which lead to plant death

Toledo, a more pronounced phytotoxic effect was registered (note 3), but the plants recovered with no other secondary effects (Table 3).

The susceptibility to diseases, expressed by the percentage of affected plants, has registered values of 0% for Plasmodiophora helianthi, 0% for Sclerotinia sclerotiorum, 1–2% for Phoma helianthi and 1–2% for Phomopsis helianthi, compared to hybrid IMI-resistant Goldimi, which registers 2% for Plasmodiophora helianthi, 3% for Sclerotinia sclerotiorum, 4% for Phoma helianthi and 1–2% for Phomopsis helianthi. The tested hybrids had a good position of the head versus stem vertical direction (notes 4–6), a shape which excludes the occurrence of Botrytis cinerea and an adequate head diameter (19–20 cm) (Table 3). All tested hybrids were resistant to lodging, in both vegetation and harvesting stages. The hybrids Bond and Rambo register percent of 3.4%, respectively 5.7% with plant breaking under head, with no losses at harvesting. The hybrid height is medium (159–169 cm), close to conventional hybrid Favorit (165 cm). The shortest hybrid was la Pampa (155 cm) and the highest one was IMI-resistant Goldimi (210 cm). On average, the vegetation period of Sulfo-resistant hybrids is 106–115 days as in Favorit, except the hybrids Toro, La Pampa, Sulfosol and Bond, which reach maturity 3–7 days

Figure 1. Unwanted effects to application of tribenuron methyl–based herbicides: lack of head; modification of head shape
later. The latest hybrid proved to be Bond (115 days), while the hybrids Zorba and Toledo reached maturity 2 days earlier versus conventional hybrid Favorit.

The advantages of the method are: the problem weeds as *Cirsium arvense* L. and *Xanthium strumarium* L. are controlled and absence of remains in the soil. Disadvantages of the method are occurring of phytotoxicity phenomena when herbicide is applied during cold nights (night temperatures <-12 °C) as well as mistakes in herbicide application (inadequate adjustment of equipment, lack of washing, application of another herbicide at a shorter interval) (Figures 1 and 2).

Many researchers conclude that the growing of Sulfo-tolerant sunflowers resulted in effective herbicide control of broadleaved weeds (Zollinger, 2003; Malidža et al., 2006; Kukorelli et al., 2008, 2011a, 2011b, 2012; Delchev, 2013a, 2013b; Pirvu, 2013). Our research confirms that by growing sunflower hybrids resistant to 75% tribenuron methyl-based herbicides the risk is reduced to a very low level, phytotoxicity was very weak and yields were not affected in comparison with conventional and IMI hybrids. Low toxicity of 75% tribenuron methyl-based herbicides in sunflower hybrids was reported by other authors (Kukorelli, 2010; Delchev, 2013a; Pirvu, 2013).

Achieving hybrids adequate to Sulfo technology, resistant to 75% tribenuron methyl-based herbicides, depends on the dominant gene S, discovered in USA. The F1 (SS) hybrids are completely resistant. Kukorelli (2012) reported that the homozygous types had higher level of resistance than the heterozygous ones. Hybrids released through Turbo technology, resistant to tribenuron methyl-based herbicides, in F1 hybrid generation, gene S, which confers resistance, is heterozygous Ss (F1 is completely resistant) (Figure 3). There are some difficulties in Sulfo resistant hybrid multiplication. Due to foreign pollination beside F1 Ss hybrids, s s sterile or fertile plants could occur. Kukorelli (2012) also reported certain types of herbicide-tolerant varieties that showed different levels of resistance.

The discovery of a wild *Helianthus annuus* L. population (in Kansas, USA) resistant to a sulfonyleurea herbicide (tribenuron methyl) (Al-Khatib et al., 1999) and the creation of the first hybrids on this basis (Miller et al., 2000; Jocic et al., 2001; Miller et al., 2004) is a good prerequisite for the development of new modern and improved sunflower hybrids possessing tolerance to tribenuron methyl-based herbicides (Figure 4).

\[
\begin{array}{c|cccccccc}
T_1 & T_2 & M_1 & M_2 & M_3 & M_4 & M_5 & M_6 & T_1 \\
\hline
Form ♀ (SS) x Form ♂ (ss) & \hline
F_1 (SS) & \hline
F_1 (SS) – complete resistance
\end{array}
\]

Figure 3. Inheritance of gene S (which confers resistance) in F1 hybrids released through Turbo technology, resistant to tribenuron methyl-based herbicides
Conclusions

Introduction of sunflower hybrids resistant to 75% tribenuron methyl-based herbicides proves the practical and economic importance of Sulfo technology for effective control of the problem broadleaved weeds and its adaptability under our conditions. Hybrids released through Turbo technology, resistant to tribenuron methyl-based herbicides, in F1 hybrid generation, gene S, which confers resistance, is heterozygous Ss (F1 is completely resistant).

The yielding ability of sunflower hybrids released through Turbo technology, resistant to tribenuron 75% methyl-based herbicides, is not affected compared to the conventional check Favorit, on three years average, its level being 3652-4985 kg/ha, the Favorit has realized 3735 kg/ha.

The hybrid Toro is distinguished especially through the highest gain yield compared to the check Favorit (1250 kg/ha, respectively 33.5%). The yielding ability of Toro hybrid exceeds by 774 kg/ha (11.8%) the yield achieved by the hybrid PR 64 LE20 (Pioneer signature).

References

Delchev G, 2013a. Efficacy and selectivity of vegetation-applied herbicides and their mixtures with growth stimulator Amalgerol which confers resistance, is heterozygous Ss (F1 is completely resistant). premium at oil-bearing sunflower grown by conventional, Clearfield and ExpressSun technologies. Agricultural Science and Technology, 5, 2, 200-205.

DuPont Crop Protection Sulfonylurea Herbicides. Our Commitment to Quality. K-05825 (09/05) Printed in the USA.

Review

Blue-green coloured eggs in *Gallus gallus domesticus*
H. Lukanov

Genetics and Breeding

Investigation on the resistance of doubled haploid sunflower lines to some biotic factors
M. Drumeva, P. Yankov, N. Nenova, P. Shindrova

Usage of cluster analysis for grouping hybrids and evaluation of experimental mutant maize hybrids
M. Ilchovska, I. Ivanova

Biological fertility and milk yield in Bulgarian Dairy Synthetic Population sheep according to breeding line
N. Stancheva, I. Dimitrova, S. Georgieva

Nutrition and Physiology

In vivo digestibility of cereal-based diets supplemented with sunflower vs. rapeseed meal
M. Yossifov, L. Kozelov

Histometrical parameters in third eyelid (Harderian) gland of the common pheasant (*Phasianus Colchicus Colchicus*)
D. Dimitrov

Production Systems

Studies on some cherry clonal rootstocks in nursery
G. Dobrevska

Parameters of "yield – irrigation depth" relationship for sunflower grown in the region of Plovdiv
A. Matev, R. Petrova

Optimization of thickness of thermal insulation for roofs of turkey's houses
R. Georgiev, V. Dimova, K. Peichev, P. Georgiev

Sulfo technology for multiplication of sunflower hybrids resistant to tribenuron metil-based herbicides
C. Meluca, N. Pirvu, T. Nistor, R. Sturzu, A. Stoilova

Influence of universal liquid fertilizer MaxGrow on yield and quality of durum wheat (*Triticum durum Desf.*) cultivar Progress
G. Panayotova, A. Stoyanova
Effect of different types of main soil tillage on the vertical distribution of maize seeds in the soil layer and on the development of the plants
P. Yankov, M. Drumeva

Analysis of energy consumption for artificial lighting of rooms for fattening of pigs
V. Katsarov, K. Peychev

Influence of Herbagreen mineral fertilizer on seed production of cucumber, melon and zucchini
N. Velkov, V. Petkova

Agriculture and Environment

Soil properties and salt content of soil from Inland salt meadow near Radnevo town
M. Todorova, N. Grozeva, D. Dermendjieva

Botanical composition of the main pasture types in Sakar and Strandja region
V. Vateva, K. Stoeva, D. Pavlov

New data for Leucoagaricus and Leucocoprinus (Agaricaceae) in Bulgaria
M. Lacheva

Development and characteristics of accessions of Eragrostis tef (Zucc.) Trotter in the South Dobrudja
H. Stoyanov

Possible adverse effects of tetracyclines on the human health and the environment
Y. Koleva, T. Dimova, G. Angelova

Contemporary assessment of the development of the genus Chaetoceros in the Bulgarian coastal waters
D. Petrova, D. Gerdzhikov, G. Kostadinova

Ecological assessment of the phytoplankton community in the Bulgarian Black Sea coastal waters
D. Petrova, G. Kostadinova, D. Gerdzhikov

Product Quality and Safety

Biopolymer matrix systems for incorporation of biologically active substances
S. Dyankova, A. Solak
Results

ment possible for others to repeat the experi-
A criterion of sufficient information is to be
methods and conditions applied for the
chemical analyses, statistical and other
research, organization of experiments,
Material and methods:

hypothesis and goal?

described in the paper? What is your
necessitated the research problem,
what is new on the studied issue? What
following questions: What is known and
but giving the essence of study.

Figures should be sharp with good
contrast and rendition. Graphic materials
should be preferred. Photographs to be
appropriate for printing. Illustrations are
supplied in colour as an exception after
special agreement with the editorial board
and possible payment of extra costs. The
figures are to be each in a single file and
their location should be given within the
text.

Discussion: The objective of this section is to indicate the scientific significance of
the study. By comparing the results and
conclusions of other scientists the
contribution of the study for expanding or
modifying existing knowledge is pointed
out clearly and convincingly to the reader.

Conclusion: The most important conse-
quences for the science and practice
resulting from the conducted research
should be summarized in a few sentences.
The conclusions shouldn’t be numbered
and no new paragraphs be used.

Contributions are the core of conclusions.

References:

In the text, references should be cited as
follows: single author: Sandberg (2002);
two authors: Andersson and Georges
(2004); more than two authors: Andersson
et al.(2003). When several references are

cited simultaneously, they should be
ranked by chronological order e.g.:
(Sandberg, 2002; Andersson et al., 2003;
Andersson and Georges, 2004).

References are arranged alphabetically
by the name of the first author. If an author is
cited more than once, first his individual
publications are given ranked by year, then
come publications with one co-author, two
co-authors, etc. The names of authors,
article and journal titles in the Cyrillic
and no new paragraphs be used.

The conclusions shouldn’t be numbered
and no new paragraphs be used.

Contributions are the core of conclusions.

References:

In the text, references should be cited as
follows: single author: Sandberg (2002);
two authors: Andersson and Georges
(2004); more than two authors: Andersson
et al.(2003). When several references are

cited simultaneously, they should be
ranked by chronological order e.g.:
(Sandberg, 2002; Andersson et al., 2003;
Andersson and Georges, 2004).

References are arranged alphabetically
by the name of the first author. If an author is
cited more than once, first his individual
publications are given ranked by year, then
come publications with one co-author, two
co-authors, etc. The names of authors,
article and journal titles in the Cyrillic
and no new paragraphs be used.

Contributions are the core of conclusions.

References:

In the text, references should be cited as
follows: single author: Sandberg (2002);
two authors: Andersson and Georges
(2004); more than two authors: Andersson
et al.(2003). When several references are

cited simultaneously, they should be
ranked by chronological order e.g.:
(Sandberg, 2002; Andersson et al., 2003;
Andersson and Georges, 2004).

References are arranged alphabetically
by the name of the first author. If an author is
cited more than once, first his individual
publications are given ranked by year, then
come publications with one co-author, two
co-authors, etc. The names of authors,
article and journal titles in the Cyrillic
and no new paragraphs be used.

Contributions are the core of conclusions.

References:

In the text, references should be cited as
follows: single author: Sandberg (2002);
two authors: Andersson and Georges
(2004); more than two authors: Andersson
et al.(2003). When several references are

cited simultaneously, they should be
ranked by chronological order e.g.:
(Sandberg, 2002; Andersson et al., 2003;
Andersson and Georges, 2004).

References are arranged alphabetically
by the name of the first author. If an author is
cited more than once, first his individual
publications are given ranked by year, then
come publications with one co-author, two
co-authors, etc. The names of authors,
article and journal titles in the Cyrillic
and no new paragraphs be used.

Contributions are the core of conclusions.

References:

In the text, references should be cited as
follows: single author: Sandberg (2002);
two authors: Andersson and Georges
(2004); more than two authors: Andersson
et al.(2003). When several references are

cited simultaneously, they should be
ranked by chronological order e.g.:
(Sandberg, 2002; Andersson et al., 2003;
Andersson and Georges, 2004).

References are arranged alphabetically
by the name of the first author. If an author is
cited more than once, first his individual
publications are given ranked by year, then
come publications with one co-author, two
co-authors, etc. The names of authors,
article and journal titles in the Cyrillic
and no new paragraphs be used.

Contributions are the core of conclusions.